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Abstract This number isconstrained byt and byw, the width of a

_ o window of synchrony.Nodesthat fire within a lag of less
This paper presents aonnectionist model of human than®/2 are considered to fire in synchrony (figure 1).
reasoning thatuses temporalrelations between node
firing. Temporal synchrony is used for representing A
variable binding and concepts. Temporal successenves —
to represent rules byinking antecedent toconsequent I | I

i ies i A

parts of the ruleThe number of successiveynchronies is

affected by twowell-known neurobiological parameters, B
the frequency of neuralythmic activity andthe precision
of neural synchronization. Reasoning redicted to be
constrained by these variables. Arexperiment
manipulating theamount of successivesynchronies is C
presented. Experimental resultmuld seem to confirm the
predictions. D

i

Introduction
] . ) Figure 1: A representation of rhythmic activation and
Shastri & Ajjanagadde (1993) described SHRUTI, a  gynchrony. Node B fires in synchrony with node A and node

connectionist model of tractable reasoning. Thegnded to  p fires in 'synchrony with node C (since the precision is less
build a neurally plausiblenodelbasedmainly on temporal than®/y)

properties ofobservedythmic neural firing patterns in the
brain. Certain neurontend to oscillate in synchrony at a o o
frequency of 30 to 8(Hz. (i.e. every 33 to 12ms). The The precision of synchronlzatlobetween neurons has
model of Shastri & Ajjanagadde usethis property in the beenreported to beapproximately 3ms. (Konig & al.,
attempt to solve the binding probleMariablesand their ~ 1995). This means thab should bearound 6ms. These
respectivecontentsfired in synchrony makingappropriate Vvalues Tt and w limit the number of different possible
bindings between roleandfillers. The use of thisemporal ~Synchronies toaround 10. This corresponds tathe well

property to solve the binding problem was fisstidied by —known numbef7+2, the span of working memory (Miller,
Clossman (1988). 1956, Lisman &ldiart, 1995). Within aparticular window

of synchrony, however, numerous concegas fire at the
same time. The relevant constraint is the length ofthan

2?:;3”?(;622& rr(aef?esg\r/](lengr]e;séolr:mIt‘?'(rj]istgor\:\(l:gaﬁtrc]jiztcrrlibgs of reasoning. As its lengtincreases, the probability for an
Jjanag 9 P error to occur increases.

the type of reasoning that people do effortlessly, ) o .
immediately, almost reflexively. It iscontrasted with A good example of reflective reasoning deduction,
reflective reasoninglemanding more effort arattention and Which has beernwidely studied. Typically subjects take
taking more time. Deductive reasoning that baenstudied ~approximately 5 sec talraw asingle deductive inference
extensively in cognitive psychology pertains to the class diClark 1969). Thisdelay is farlonger than thoselescribed
reflectivereasoning. In thigpaper Iwill attempt to extend by the Shastri & almodel for reflexive inferencélhere are
the properties of Shastri & Ajjanagadde model to allow it tdwWo ways toextendthe Shastri & almodel toallow it to

Their model is able todraw inferences with great

also handle reﬂectivereagoning_ From the model, Will producetheseinferenceswith thesedelays. Eitherdeductive
derive certain  predictionsand provide empirical evidence reasoning tasksequire, asuccession ofdifferent reflexive
substantiating these predictions. episodes, or theyequire learning to initially encode the

problem, followed by the building of an appropriate chain of

synchronization as a binding mechani@ray & al. 1989 reasoning that will link thelata to amore abstract rule that
Singer 1995, Nelson 1995). The intervbétween two enables. mferenc,te by approprlate bmdl'ngs.

spikes of a neurory is approximately 12 to 33 ménside The first solutionrequires arexplanation of the nature of
this interval a number ofiifferent synchroniescan occur. the relationshipbetween successive dynanbndings. The

There is neurobiological evidence for considering



second requires a learning algorithm to build a new chain ¢fansmitted. Connections alsdiave a length which
reasoningandthe presence ofibstract knowledge dhe end determines the delay for the activation to propafram the
of the chain of reasoning, for example pragmagiasoning afferent node to the efferent node.

schemas (Cheng & Holyoak 1985).

I choose thesecondsolution, which meanincluding in
the model of Shastri & al. a mechanism é&oidingwindows
of synchrony duringhe reasoning process. In SHRUTI the
form of thequerymust contain allwindows of synchrony
necessary for a conclusion to 8e&wn. Deductive reasoning
tasks oftenrequire addingnew windows of synchrony
becausdahe variables of the conclusion may tb@und to a
different content than those of the premises. For example,
consider aconditional reasoning task with a rufdf Tom -
gives acandy toGus, then Tom has stolen mon&pm @
Mary" and a premise: "Tom givescandy toGus". Inorder
to generatehe correctconclusion (“Tom has stolen money @Excitatorymde \. Inhibitory link
from Mary"), "candy" and "money" cannot fire in synchrony,
nor can "Gus" and "Mary". Otherwise there would be o . .
confusion about exactly what is stolen or givend to @mmrymde > Euitatory lnk
whom it is stolen or given.

Shastri & Ajjanagadde (1993) describe a learning
algorithm thatenables nodes to fire isynchrony starting ) )
with a noisy temporal firing distributionLearning is not A node represents a small cluster of neural units (akin to the
only necessary to synchronidging of appropriate nodes, Hebbian notion of cell assembliem)d aset of nodesfiring

but also to link the given rule to a maabstract rule that N Synchrony represents a concept orset of bound
enables the generation of the conclusion. concepts. In figure 4 the concept "Consequentommposed

. . .. of 4 nodes and is bound to "Lawrence" because theyfioeth

Shafstrl & Grannes %1395qulflec}_SHRU_T| to e_:nab:\e 't in synchrony (figure 3). In this netwoekchitecture, unlike
to perform negatiorand detection ofinconsistenciesThey a0y connectionist architectures, there is no notion of layer.
added anegative collectomode to every predicatelhis
option was not chosen in th@esent model since in their
extension, the negation ofeach predicatemust be
specifically included. This seemed somewhat unrealistic Excitatory activation is stochastically transmitted along
since negation is ageneral conceptand neednot be  connections. Connection weightspresenthe strength of
specifically associated with each predicate. activation passingand the probability of propagation

The Shastri & al. model makesise ofdifferentkinds of ~ through the connectionsAccording to their weight,
nodes: fact nodes, collector nodes, enabler nodes, e€@nnectionsare stochasticallyselected. Once selected, the
According to Ajjanagaddél994)this set ofnodetypes, as affgrent node receives aactivation equ_al to the value of
well as the distinctionbetween roles and fillers, is  Wweight. If the sum of activations arriving atnade reachs a
unnecessary. Helescribes asystem that uses a set of threshold, thenode fires. Activation propagation along a
excitatoryandinhibitory links, called alink bundle. These connection takes time and the propagation speeantomly
link bundles preservethe qualites of SHRUTI while Selectedrom a particular interval which isodified by the
simplifying the representation. | adaptiis solution to the learning algorithm. Inhibitory activation follows theame

Figure 2: Structure of the net

Activation Propagation

present model. principles,exceptthat activationpropagates froomodes to
excitatory connections.
Description of the Model Once a noddires, it tends to firerhythmically with a

frequencybetween 30and 80 Hz(i.e. between 33and 12
ms). Following Shastri &Ajjanagadde’'s(1993) notation,
this inter-spikedelay is calledt. The width of windows of

The network iscomposed of @et of nodeswhich are not ~ Synchrony last 3 to 6 ms and this value is noted

fully connected. Each node is either excitatoryindnibitory. Synchronous firing ofnodes either produces variable
Excitatory nodes can sendnly excitatory messages, and binding or associatesinits that participate in aconcept
inhibitory nodes only inhibitory messages. Whibecitatory  representation. The tempoisgquence oynchronous firing
links bind two nodes, inhibitorylinks bind a node to a indicates relations between concepts, enabling the
excitatory connection. This enables a temporary blocking akpresentation ofrules. For example, infigure 3,
a specific excitatory transmission. (figure 2). "Antecedent"fires before "Consequentand stands for the

Each connectiofas a weight which has two functions: 'Ulé: "If AntecedenthenConsequerit
determining the probability ofransmission of activation,
and, inthe event of transmission, the amountaofivation

Network Structure



Learning P*a9 (soundonly in materialequivalence).Table 1 shows

p

Learning modifies weightsaind connectiondelays on the (hese inferences.

basis of information from thexternal world. It isassumed

. . Modus Denying the | Affirming the [Modus
that facts perceived are composed of a series of concepts. THe Ponens Antecedent | Consequent |Tollens
activation of these concepts has a particular tempodat. Group T [from Tom dggggm . rom Tom hadirom fom hag
The task of the learning algorithm is teproduce this 6w i Gusinfer |a candy to |t Lawrence [candy o
temporal order and tolink concepts to the rest of the ;i?,g‘nh:i an dﬁ;:‘gg?;ggﬂ g}fgsTg”;an g-anrence
knowledge base. External activation shoultherefore be to Lawrence [a candy to |to Gus does not give
distinguished from internal autonomous activation of the Lawrence a candy to
net. Modification of weightsand delays depends on the Group 2 from Tom _ [from Tom __|from Tom hagfrom Tom has
overlap of externakndinternal activation. In thecurrent |8« AP Sl ) B S A
model, when activations overlap, the weightseatitatory Tom has  [Gusinfer Toninfer Tom"  [Mary infer
connections increasandthe delay intervals shift tofocus o e em money| B e CandITom doe ol
around the most recently selectbelay duration. Inaddition, from Mary fo Gus
the weights of connections inhibiting excitatagnnections
also decrease. When activations do not overlap the process is Table 1: instantiation of inferences

inverted. Delay learning can rapidly focus onparticular _ . .
value, enablingiodes to changtheir partners of synchrony  Starting with the query: "Tom givescandy toGus", the

and therefore permitting plasticity in variable binding. model predicts arhythmic pattern with 6windows of
synchrony thatcould be represented bfigure 3 and a
Predictions of the Model network state enabling sound inferences as in figure 4. With

6 windows ofsynchrony, ifw is 3 ms., ™ must be> 18
This model predictghat reasoningyill take more time and ms. (the frequency must be inferior to 56 Hz.Jpils 6 ms,
be more difficult as the number of synchroniesreases. T must be= 36 ms. (thefrequencymust beinferior to 28
The number of possible temporal synchrondepends on Hz.). In figure 3,7 is equal to 24ms. (42 Hz.)and w is
the frequency of rhythmic pattern or the inter-spileday )  €qual to 4 ms.
and the width of windows of synchrony @). When the

number of synchronies increases, tfiequency must
decreasédi.e., 1 becomes larger) and/ay mustdecrease. If TES f f fi f h f f
this last value decreasesoo much, the probability of N N N h N ! N
confusion between synchronies increasedthe probability Tort
of errors increases. In additiotie time for the network to
reach a stable state will increase. SIVES h h h h h h h

ey periment 1 CAWDY h 8 F b b K

Xperimen
P sus T T

To test the lasprediction we ran a reasoning experiment
comparing twosituations. The first situatiomequires six ANTEC EI'ENT f [ f f f f
windows of synchrony (@), the second requireseight
windows of synchrony @). Thirty subjectsreceived the | LAWEREHCE fi fi h fi fi fi
following instructions: "A rule written in blue wilbppear h h N h h h
on thescreenyou mustread itandtell me when yothave | =HHEEQTEHT
understoodt. Afterward, astatement, written inred will L 1 1 1 1 1 1
appear on the screen. You should relate it to theandkell L. 1L T L Tt ¢ 1

me what youconclude".Subjectswere given a series of
similar arithmeticexercises to familiarizahem with the
procedure.Subjectswere randomly assigned tone of the
two groups.

In the first group (&), subjectsreceivedthis rule:"If Tom
gives acandy to Gus then Tom has given eandy to
Lawrence" andhe questionsappearing in a randororder
were:"Tom gives acandy toGus", "Tom doesnot give a
candy toGus", "Tom has given aandy to Lawrence" and
"Tom has not given @&andy toLawrence". This task of
conditional reasoning makesreference to material

Figure 3: Concepts firing following the query: "Tom gives a
candy to Gus" in the situation 1. Gus and Antecedent are
firing in synchrony as well as Lawrence and Consequent

Connections represented in figure 4 enable sound material
implication inferences. Wherthe premise is "Yes, Tom
gives acandy toGus", activation ispropagatedrom "Gus"
to "Antecedent", from "Antecedent” to"Consequent" and
from "Consequent" td'Lawrence". Whenthe premise is
"No, Tom gives acandy to Gus", "No" inhibits the
implication. Subjectsinferences are ofour types: Modus connection fr_om "Antecedent" to "Co_nsequent" thus prevents

‘ : any conclusionWhen the premise is "Yes, Tom gives a

Ca, g, ~ 1
Ponens 2, Modus Tollens 75 (sound inferences) ooy toLawrence”, "Lawrence’activates "consequent” but
Denying theantecedent™"* andAffirming the consequent "yes" inhibits the connection from “"Consequent" to

"Antecedent" thus prevents any conclusionWhen the




premise is "No, Tom gives &andy to Lawrence" no Mary" appearing in aandom orderThe required 8windows
inhibition occurs and activation is propagated to enable of synchronycan be represented asfigure 5 andthe state

"Gus" nodes to fire. of the network as in figure 6.With 8 windows of

- synchrony, ifw is 3 ms,m must be> 24 ms. (therequency

Tom Gives Candy Gus  Lawredc st be inferior to 42 Hz.), i is 6 ms,TT must be> 48
SR oo ©O ms. (the frequency must be inferior to 21 Hz.) which is out

©) o0 O O ) of realistic range. In Figure % is equal to 28 ms. (36iz.)

andw is equal to 3 ms.

The connections shown in figureeiable sound material
implication inferences.For each ofthe four premises, the
activation is correctly propagated.

Anteceden O Consequent
O Tom Gives Candy Gus Has Stoldvioney Mary
O O0O0=>00 00 QO OO
@) O—>0 O—>0O(C
o) O
0 °Je¢)
Yes NoO
Anteceden 0O Consequent
Figure 4: A network configuration thanablessound
infe-renceswith regard to material implication. Each
concept isrepresented by aet of interconnectechodes
although it is notshowed. (Notehat somenodescould
be used by more than one concept, and that only a small OO o OO
number of connectionare representediffirmation and Yes No
negation nodes are necessarjor sound material
implication inference through inhibition mechanism. Figure 6: A network configuration that enables sound
inferences with regard to material implication. Each concept
- h N h N h N IS Tepresented by a set of interconnected nodes although it is
not showed.
o h h h h h h Experimentally evaluating the difficulty of the task is not
ATVES h h h h h feasy| It is well known that subjects often do not follow
rulesfrelated tomaterial implication. In some situations of
AWTECEDENWT | f h h f rleveryday life, sound inferencesrelated to material
implication are less adequate than these of material
CAHDY f f f f f quijalence. But we cannot separate thgges of people in
tyo groups, those who accept material implication and those
=SS f fi f fi f vmo bcceptmaterialequivalence. Anumber of biasesiffect
h N h N N SL&bjE cts responses (Evans 1989). Contatcontext also
Hiaz STOLEH mbdify the pattern of responses (Cheng & Holyoak, 1985).
Te domparethe performance betweeigroups, we could
COHSEQUEN] h h h h h cmnpare respons@atterns thatare sound for material
MOHET h | h h h implication or material equivalence toother types of
patterns. The sounthferencesfor material implication are
HARY h h h h I Mofljs Ponens™s” and Modus Tollens™>™, for material
L 1 1 1 1 1 - p=q,p i
11 1L 11 11 1. gruijalence, Modus ponens— , Denying theantecedent

- _— p=a.q
Figure 5: Concepts firing following the query: "Tom gives a- = Affirming the consequent—s— andModus Tollens

candy to Gus" in the situation 2. Gives and Antecedent are =2 \y/q comparssubjects with consistent responses to

firing in synchrony as well as Has_stolen and Consequemsubjects whocontradictthemselves from onénference to

For the second group «®, subjects received this rule: "If another.

Tom gives a candy to Gus then Tom has stolen méoey ~ As the figure 7 shows, the proportion of consistent
Mary" and the questions were: "Tom givesandy toGus", patterns of responses is significantly higher in the group
"Tom doesnot give acandy to Gus", "Tom has stolen Wherethe presentedule require six windows of synchrony
money from Mary"and"Tom has not stolen moneyom  (x2 (1)= 5.129 p < .05).



100

situations involving the same number of instantiations of

90 Domer the samepredicate,but involving a different number of

?8 Material transformations irorder tomake a summarizedonclusion.
60 implication The first group of subjects received these premises: “Allan is
50 or in love with Mary”, “Mary is in love with Allan”,"Peter is

40 equivalence in love with Barbara”, "Barbara is idove with Peter”. The

30 second group received these premises; “Peter Isvim with

20 Mary”, “Barbara is inlove with Allan”, “Allan is in love

10 with Mary” and “Mary is in love with Peter”. Thefour

_ _ premiseswere presented in a randamrder to both groups.
6 synchronies 8 synchronies After readingthese premises, subjebd to infer which
. ) ) ) people were happy (i.e. where their love was reciprocated). A
Figure 7: Percgntage of consistent and inconsistent patterﬂ'ﬁgher proportion of Subjecgavethe correct answer in the
of inferences for the two groups. first groupwhererelationsare all reciprocal (.92), than in

o , the second group (.66). Response times were also shorter for
successive inferences, it might teticized asbeingsimply 10262 ms) Student t (18) = -3.352 p < .005.
a measure ofask difficulty. The time taken by subjects to
draw aninference canalso be used. Théme from the
appearance ofhe question to the response wasorded,

These data shothat multiple instantiatiortan betreated
rapidly whenonly a small number of transformations are

giving the averages indicated in Table 2. require(_JI toget a summarized represgntaﬂubjectsare_ far
less efficient as the number ofrequired transformations
Group 1 (&) Group 2 (&) increases. However, there should be a mechal@ading to
2892 ms 6528 ms a summarized representatichat maintains atrace of
previous instantiations while theurrentinstantiations are
Table 2: Average time in ms. between the question presen2CtiVe-

tation and the response. Student t (103) = -3.046 p < .005 ) )
Discussion
Thesedatashow a highly significantifference between
the two groups. Subjectdoing the taskrequiring eight
windows of synchrony take more time to makeirdfarence
than subjects doing the othtask. Aspredicted,when the
number of windows of synchrony increas#i® likelihood

The present system attemptsmodelnot only certain low-
level neurobiological facts about synchrony of neural firing
but also higher level psychologicalata on deductive
reasoning. Theeadercan refer to Shastri & Ajjanagadde

of confusion between synchronies increasesicoding or (1993) for a discussion of the neurobiological plausibility of

learning time increases,and the subject's response is S type of model.
delayed. We know from Johnson-Laird's wofk.g. Johnson-Laird

Psychologicaldataabout multiple instantiatiortend to & Byme, 1991)that reasoning is highlyconstrained by
show that peopleleal more efficiently with a problem in WOrking memory capacity and we know from Cheng &
which predicates areinstantiated more than once. ForHolyoak's work (e.g. Cheng & Holyoak, 1985, Holyoak &
example, De Soto & a(1965)showedthat subjectanake ~ CNeng, 1995) that reasoning is alsmnstrained by
less errors when inferring “A’is bettethan C” from the pragmatic prlnqlples whiclrethe rgsult of theacquisition
premises “A is better than Bind “B is better than C” than and generalization of knoyvledgeThls model attempts to
from the premises “B is better than @d “B is worse than Incorporate both levels in a single systemWorking
A”. My hypothesis involves an abstraction, a replacement ¢Fi€MOry is conceived as the synchronous and rhythmic firing
the multiple premises by ehunkedsummary thatescribes ©Of nodes. Thisprocess is theonsequence dhe content of
the situation. In this example, theredicate extends the ONd term memory since working memory\igwed as the
number of its possible arguments to combine those &Hrrentactivation of long term memory.
additional instantiated predicates. When it receivesgaend The parallel activation of nodes this modelgives it the
premise “B is better than C” of the firsituation, the theoretical possibility of avoiding problems of
system merges the first premise tmclude C and may combinatorial explosion in acaled-upversion. This is also
transform a representatioBetter than: A, B” to “Better one of the most interestingeature ofthe Shastri & al.
than: A, B, C". Thesecondsituationrequires an additional model (Shastri, 1993). Many of theequential models of
process, that of using the oppogitedicate totransform ‘B deductivereasoning have beeshown to be intractable in

is worse than A” into “A is better than C”. scaled-up versions (Oaksford & Chater, 1995).
, Among the limitations of thisnodelarethe problem of
Experiment 2 the multiple instantiatiorand catastrophic forgetting in the

learning process. Multiple instantiation hasentreated by
Mani & Shastri (1993). Fon instantiations of aoncept,
the amount ohodesrequired intheir model isn2. There is
no mechanism in the presembhodel for dealingwith

The abovehypothesisconcerning multiple instantiations
was testedexperimentally. However, for themoment, the
present model cannot doultiple instantiation. lused two



multiple instantiation. Buexperiment 2 could guide our Cosmides, L. (1989). The Logic of Socigkchange: Has
researchThe number of simultaneous instantiatioseems natural selection shaped how humans reason? Stuiles
to be bounded around 2. Wepuld imagine that nodes the Wason selection taskognition, 31,187-276.
pertaining to a doubly instantiat@tedicatewould fire at a De Soto, C. B.London, M. & Handel, S.(1965). Social
rythm twice as fast as the others. As rythmb@inded by reasoningandspatial paralogicJournal of Personality an
the refractory period ofneurons, multiple instantiation is  Social Psychology, B513-521.
also bounded.This hypothesis seem®asonablesince the Evans, J. St B. T. (1989Bias in Human Reasoning:
frequency ofoscillations haseen found to beependent on Causes and Consequencétove: Lawrence-Erlbaum Ass.
the amount of activity that a neuron receives. French, R. M. (1994). Catastrophic Forgetting in
Catastrophic forgetting isharacterized by an interference COnnectionist Networkscan it be prevented? In J.
of the newly leamed content on previouslyleamed ~ Cowan, G.Tesaro & J. Alspector (EdsAdvances in
information making this information lost. In my Neuro-Processing Systems 6. San Francisco Ca.:

computational simulation, this limitation means that the Morgan-Kaufmann. .

prob?em must be encoded at the same time as thetdomg ©'®Y: C. M., Konig, A, Engel, A. K. & Singer, W.

knowledge is stored. A separationthe architecturento a  (1989). Oscillatory responses in cat visoaftex exhibit

"long term memory" componenand a "medium term mFer-cqumnar synchronlzatlon whichreflects global

memory" component might be affective way of dealing stimulus propertiesNature, 338,334-337. .

with this problem (French, 1994). Holyoak, .K' J. . & Cheng, P. W'. (1995)|P_ragmat|c
Reasoning With a Point of View.Thinking and

. Reasoning, 1289-313.

Conclusions Johnson-Laird, PN., & Byrne, M. J. (1991)Deduction.

London: Lawrence-Erlbaum Ass.

A good model of human reasoning should explain the}@nig, P., Engel, A. K., Roelfsema, R., & Singer, W.

mechanisms by which people solve reasoning problems, t o N
cause of systematic biasesand how the content of a (Clgr?]s)utggxpge;é?f A:;SNQUI’OI”IBJ Synchronizatidietral
problem affects performance. In this paper, | have focused q_'?smanp JE éaldiart M A P.(1995). Storage of 7 + 2
a possible low-level mechanism — namely, synchrony — P, LI ) L=
that enablegand perturbs)deductivereasoning. However, | gg?rtl-;'fgnlgl)\/llgmones in Oscillatory Subcycleicience,
did not focus on systematic biases dascribed inEvans S ) : . . .
(1989). It is known that a problem's contaaffects the Mar_wtlh a I?lle&lnz?;:é'rgt'lc;ﬁ .%1292);‘?250’:!\(;?].SI??:;)Q&%Q”
reasoning process._The present maatempts to give an \g;/sterrt1J \I/\F/)ith a TypeIHi:ararlchy ConnectilonIScience é ’
emergent explanation fothis phenomenonyather than 505-242 ' 1
proposing a specificontext-independenmnechanism for it, Soere e .

we could incorporatehe Pragmatic Reasonin§chemas Mlll\l/leirr{ucss.'l'vAv.o(égsgf)].ol-l(-)g?czl\i/llalgle(i/?lev'\\llugnéjf-;?e\/dw“s or
(Cheng & quyoak, 1985 Holyo_ak & Cheng, 1995) OrNeIson, J. 1. (1995)Binding in the Visual System. In M.
possibly SocialExchange (Cosm!de§.989). The model A. Arbib (Ed.) The Handbook oBrain Theoryand Neural
presented herattempts to combine neurobiological and | ' y

; o o : Networks.Cambridge Ma.: MIT Press.
sychological plausibility. Inaddition, experimentadata . .
onfirmeogl]a nurFr)1ber of p?/edictions of the n?odel. Oakford, M. & Chater, N. (1995). Theories of Reasoning

and the Computational ExplanationB¥eryday Inference.
Thinking and Reasoning, 121-152.
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