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Abstract

We know that color and form are processed in distinct areas of the human brain.  This

information must somehow be brought together.  How the brain might achieve these color-

form associations, as well as all other associations of this type, is one of the central themes of

this dissertation.  When looking at a field of poppies on a sunny day, how can we correctly

associate the color red with the poppies, green with the grass, and blue with the sky, while

avoiding associating the color red with the grass and the color blue with poppies?  How can

we associate the perception of red poppies with the name “red poppy,” and with its

superordinate category “flower?”  A red poppy is composed of several features, like its

shape, color, texture, etc.  How might a cognitive system bind these features to build a

coherent whole?  If we see Louise picking a red poppy, how can we correctly associate

Louise with the picker and the red poppy with the picked object, without making the opposite

and incorrect association?  These associations may seem easy to us, but how does the brain

achieve them?  How a cognitive system binds a set of features together, associates a filler

with a role, a value with a variable, an attribute with a concept, ... is what we mean by “the

binding problem.”

This thesis focuses on the neurobiological processes that enable connectionist cognitive

systems to display binding abilities, on the constraints that affect the binding process, and on

the cognitive consequences of these constraints.  To study these processes, we developed a

computer model of them.  This method forces a detailed and unequivocal description of

processes used by the simulation.  This method is also a powerful means of generating new

hypotheses.  In this study we attempt to link psychological processes with the neuronal

constraints that act on brain functioning.  The brain is composed of approximately 10 billion

highly interconnected neurons.  To achieve binding it is necessary for neurons to

communicate with each other because it has been shown that different aspects of a perceived

object are not processed in the same cortical areas.  Therefore, there must be a means for

binding neurons responding to each of these different aspects.  The neurons responding to
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the color red, to the object’s shape, and to its name must be linked to produce a coherent

whole representing the red poppy.

Neurons are connected by synapses.  The functioning of these connections is constrained

by the architecture of the brain and by the process of signal transmission.  A particular neuron

is connected to a relatively small set of other neurons.  Therefore, communication between

any two neurons generally requires a chain of transmission through intermediate neurons.  A

pre-synaptic neuron has an effect on another neuron (called the post-synaptic neuron) only if

the pre-synaptic neuron emits an action potential (i.e., if it fires).  As a consequence, this

brief polarization, which last a few milliseconds, results in a modification of other neurons'

firing potential.  Transmission efficiency depends on the strength of the connecting synapses

and the state of the post-synaptic neuron.  When a neuron emits an action potential, it is

completely insensitive to incoming signals for a short period, then its sensitivity slowly

increases.  A single pre-synaptic cortical neuron cannot alone provoke the post-synaptic

neuron firing.  This post-synaptic neuron must receive convergent and more or less

synchronized signals from many synapses in order to fire.

These neurobiological properties of neurons and neuronal firing constrain the way in

which the brain can achieve binding.  Among the various hypotheses of how this could be

done, we chose synchronization of action potentials for our model.  In the red poppy

example, neurons responding to the color red will fire in synchrony with those responding to

the shape of the flower and to the name “red poppy.” This particular synchronized cluster

corresponding to “red poppy” must be temporally distinguished from the cluster responding

to “green grass.”  Numerous neurobiological studies seem to confirm this action-potential

synchrony hypothesis.  They show that synchronization involves a particular timing precision

and occurs at a particular oscillation frequency.  This oscillation requires participating

neurons to fire repeatedly and rhythmically for a particular period of time.  These properties

of firing timing and duration have been implemented in a computer simulation called

INFERNET.  This artificial neural network uses integrate-and-fire nodes (artificial neuron-

like elements).  These nodes fire at a precise moment and transmit their activation, with a

particular strength and delay, to nodes connected to them.  When the potential of the node

reaches a particular threshold, it emits a spike.  Thereafter, the potential is reset to a resting

value.  As with real neurons, this node will then be completely insensitive to incoming

signals for a short period, after which its sensitivity will slowly increase.

INFERNET solves the binding problem by means of oscillation synchrony.  Symbols are

represented by clusters of nodes firing in synchrony.  Fillers are also bound to their roles by

synchrony.  This synchronous activity defines a window of synchrony i.e., an interval

during which the required nodes fire.  This time interval takes neurally plausible values.

Object discrimination is achieved by a succession of windows of synchrony.  Bindings are

maintained in memory by the use of particular oscillations.  The rhythmic activity and the
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synchrony precision constrain the number of distinct entities that the system is able to

maintain in memory.  This represents the short term memory span of INFERNET.  We show

that this span is comparable with human short term memory span.

The limited number of windows of synchrony also constrains predicate representations.

This prediction is tested on human participants.  If there are too many windows of

synchrony, these will interfere with each other.  In addition, binding strength decreases with

time.  These two properties explain why the short-term memory of INFERNET displays

primacy and recency effects similar to those observed in humans.  Bindings in INFERNET

are also constrained by the number of intermediate steps required for particular role nodes to

enter into synchrony with the filler nodes.  This constraint is shown to provided a plausible

explanation of various differences human reasoning.  The last INFERNET constraint

concerns multiple instantiation.  This problem arises in connectionist networks as soon as a

symbol has to be simultaneously used twice in different ways.  Since INFERNET’s short

term memory is the transient activation of parts of long term memory, it cannot make multiple

copies of a symbol, in the same way, for example, that a symbolic system does.  The

INFERNET solution to the multiple instantiation problem involves superposition of different

node oscillations.  This process is constrained by the refractory period of the nodes.  A

number of simulations with INFERNET and experiments on humans show that this solution

is psychologically plausible.  Multiple instantiation is also shown to be a plausible

explanation of certain similarity effects in short term memory.  INFERNET is also shown to

be capable of symbolic processing with using neurologically and psychologically plausible

mechanisms that have the advantages of generalization and noise tolerance found in

connectionist networks.  Finally, under certain circumstances, noise is shown to enhance

INFERNET’s processing capabilities.



 



Résumé

Comment parvient-on, lorsque l’on regarde un paysage, à associer correctement la couleur

rouge aux coquelicots, la couleur verte à l’herbe, la couleur bleue au ciel,..., tout en évitant

d’associer, le rouge à l’herbe et le bleu au coquelicot ?  Comment peut-on associer le percept

de coquelicot au nom “coquelicot”, à sa catégorie de “fleur”?  Le coquelicot est composé de

plusieurs traits comme sa forme, sa couleur, sa texture, etc.  Comment relier ces traits pour

en faire un tout cohérent ?  Comment peut-on, voyant Louise cueillir le coquelicot, associer

correctement Louise à la “cueilleuse” et le coquelicot à l’objet cueilli en évitant d’associer

coquelicot au cueilleur et Louise à l’objet cueilli?  Les associations de ce genre nous semblent

aisées, tant nous les effectuons avec facilité, mais comment le cerveau parvient-il à former ces

associations?  L’étude de la capacité des systèmes cognitifs à associer un ensemble de traits, à

associer un objet à un rôle, une valeur à une variable, un attribut à un concept, réfert au

problème de l’affectation.  Cette thèse étudie les processus permettant à un système cognitif

d’effectuer des affectations ainsi que les contraintes pesant sur ces processus.

Afin d’étudier ces processus, nous avons eu recours à la modélisation informatique.

Cette méthode permet une description détaillée et non équivoque des processus utilisés par la

simulation.  Cette méthode est aussi un moyen de générer de nouvelles hypothèses.

Nous avons voulu dans cette étude relier les aspects psychologiques de l’affectation aux

contraintes neurobiologiques pesant sur le fonctionnement neuronal.  Le cerveau est composé

de 10 à 100 milliards de neurones interconnectés.  Pour parvenir à effectuer des affectations,

il est nécessaire que les neurones puissent communiquer entre eux.  En effet, les différents

aspects d’un objet ne sont pas traités par les mêmes aires corticales.  Il doit donc exister un

moyen de relier les neurones répondant à ces différents aspects.  Les neurones répondant à la

couleur rouge du coquelicot, ceux répondant à la forme du coquelicot ainsi que ceux

représentant le nom “coquelicot” doivent former un tout cohérent.

Les neurones sont reliés entre eux par des synapses.  Le fonctionnement de ces

connexions est contraint par l’architecture et par le processus de communication.  Un neurone
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quelconque n’est connecté qu’à un sous ensemble restreint d’autres.  Il en résulte que la

communication entre la plupart des neurones nécessite un cheminement à travers des

neurones relais.  Un neurone ne peut avoir un effet sur un autre neurone que lorsqu’il émet

un potentiel d’action (brusque polarisation).  Celui-ci est très bref et aura comme conséquence

de modifier le potentiel d’autres neurones. Cette transmission n’est pas immédiate, elle prend

quelques millisecondes.  Le signal sur le neurone receveur sera décroissant.  L’efficacité de

l’effet d’un potentiel d’action d’un neurone sur une cellule recevant le signal, dépend de la

force de la synapse les connectant, et de l’état du neurone receveur.  En effet, quand un

neurone vient d’émettre un potentiel d’action, il reste insensible aux signaux afférents pendant

un moment, ensuite, sa sensibilité va doucement croître.  Un neurone ne peut à lui seul

provoquer le déclenchement d’un autre neurone.  Ce déclenchement ne peut intervenir que si

plusieurs signaux convergent de manière plus ou moins synchronisée.  Ces propriétés ont des

contraintes temporelles qui devraient intervenir dans la façon dont le cerveau code les objets

de l’univers et relie ces objets entre eux.  Il y a plusieurs hypothèses sur la manière dont le

cerveau résout le problème de l’affectation.  L’hypothèse qui motive notre travail est la

synchronisation des potentiels d’action.  Pour reprendre l’exemple précédent, les potentiels

d’action des neurones détectant la couleur rouge devraient se synchroniser avec les potentiels

d’action des neurones détectant la forme du coquelicot ainsi qu’avec ceux répondant au nom

“coquelicot”.  Cet ensemble se distinguant temporellement de l’ensemble représentant l’herbe

verte.  De nombreuses études neurobiologiques confortent cette hypothèse, et montrent que la

synchronisation a une précision temporelle et qu’elle est provoquée par une fréquence

spécifique d’oscillations.  Une oscillation consiste en une répétition rythmique des potentiels

d’action de neurones.

L’ensemble de ces propriétés a été implanté dans un simulateur appelé INFERNET.  Ce

réseau de neurones artificiels utilise des noeuds (neurones artificiels) à intégration et

déclenchement.  Ces noeuds déclenchent à un moment précis puis transmettent avec un

certain délai leur activation vers les noeuds auxquels ils sont connectés.  Quand le potentiel

d’un noeud atteint un certain seuil, il émet un potentiel d’action.  Après quoi, ce potentiel est

ramené à une valeur de repos.  Il sera insensible à toute nouvelle stimulation pendant un

moment (période réfractaire absolue) avant de devenir de plus en plus sensible (période

réfractaire relative).  INFERNET résout le problème de l’affectation par la synchronie.  Les

symboles sont représentés par un ensemble de noeuds déclenchant de manière synchronique.

Les objets sont affectés à leur rôle grâce à cette même synchronie.  L’activité synchronique

définit une fenêtre de synchronie, c’est à dire un délai à l’intérieur duquel les noeuds requis

déclenchent.  Ce délai est contraint par des valeurs mesurées par des études

neurobiologiques.  La discrimination des symboles est obtenue par la succession de

différentes fenêtres de synchronies.  Les affectations sont maintenus en mémoire grâce aux

oscillations qui ont une fréquence particulière.
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Cette activité rythmique et la précision de la synchronie contraignent le nombre d’entités

distinctes que le système est capable de maintenir.  Ceci constitue l’empan de mémoire à court

terme d’INFERNET.  Cette étude montre le parallélisme de cet empan avec celui de sujets

humains.  Le nombre limité de fenêtres de synchronies distinctes contraint également la

représentation des prédicats et de leurs arguments.  Cette prédiction sera confirmée chez

l’humain par des études empiriques.  Les différentes fenêtres de synchronies interfèrent entre

elles et la force des affectations décroît au fil du temps.  Ces deux effets expliquent pourquoi

la mémoire à court terme d’INFERNET est soumise à l’effet de primauté ainsi qu’à l’effet de

récence comme chez les humains.

L’affectation dans INFERNET est contrainte par le nombre d’étapes intermédiaires

nécessaires pour qu’un rôle particulier entre en synchronie avec un objet avec lequel il doit

être lié.  Cette contrainte permet d’expliquer différents effets observés dans le raisonnement

humain.

La dernière contrainte étudiée dans ce travail concerne l’instantiation multiple.  Ce

problème apparaît dans les réseaux connexionistes lorsqu’un même symbole doit être

représenté plusieurs fois de manière distincte et simultanément.  Comme INFERNET utilise

une mémoire à court terme qui est l’activation passagère de la mémoire à long terme, il ne

peut faire plusieurs copies d’un même concept.  La solution d’INFERNET à ce problème

implique l’utilisation de superpositions de différentes oscillations affectant les mêmes noeuds.

Ce processus est contraint par la période réfractaire des noeuds.  Différentes expériences

menées sur INFERNET et sur des sujets humains ont permis de montrer la plausibilité

psychologique du modèle.  Cet effet d’instantiation multiple permet aussi d’expliquer l’effet

de similarité sur la mémoire à court terme.

Les systèmes connexionistes ont montré leurs qualités dans l’explication de nombreux

phénomènes psychologiques.  Ils tolèrent le bruit, ne montrent pas de fragilité lorsque les

situations sont légèrement différentes de celles apprises, ils sont capables de faire émerger de

nouvelles représentations, etc.  Malheureusement, ils ont des capacités de traitement des

symboles assez restreintes.  De nombreux travaux ont tenté de résoudre ce problème.

Beaucoup y sont arrivés, mais toujours au détriment d’une plausibilité psychologique, de la

capacité de généralisation ou de la tolérance au bruit.  INFERNET parvient, en maintenant les

capacités de généralisation, et les qualités de plausibilité psychologique et neurobiologique, à

avoir, non seulement une tolérance au bruit, mais dans certaines circonstances, une capacité

accrue face au bruit.
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1 Introduction

The work presented in this thesis lies at the border of three domains: psychology, artificial

intelligence and neuroscience.  This cognitive science work uses artificial intelligence as a

glue to reconcile work in psychology with neuroscience.  The object of neuroscience is brain

functioning, while the object of psychology is behavior and mental processes.  Even if

everybody agrees that the brain controls behavior and mental processes, attempts to link brain

functioning to mental processes have not always been accepted by psychologists.  For

example, the seminal work of Hebb (1949) was completely overshadowed by behaviorism.

Many researchers still find that bridging the gap between neuronal phenomenon and mental

processes is premature.

This work will make an attempt to bridge the gap.  Even if future work shows that this

attempt was wrong, it will hopefully have enriched psychological science by generating new

and falsifiable hypotheses as about the relationship between low-level neural processes and

high level cognition.

1.1 Cognitive modeling

Artificial intelligence and computational simulations provide a means of linking brain studies

with psychological studies.  Computer programming allows the possibility of constructing a

large number of simple neuron-like elements and observing them evolving to produce a

complex behavior.  Artificial intelligence is here a method.

The work presented here started with programming the computer to simulate a large

number of neuron-like elements and their synaptic connections.  Of course the neuron model

used is a simplification of real neurons.  In this context, an attempt was made to model

complex mental behavior.  This behavior was then compared to empirical psychological data.

If there is a match between the simulation and human behavior, it simply means that the

model can be considered as a possible explanation of the underlying cognitive process.

Computer modeling is a method to test possibility but not necessity.  Note that there is no
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true necessity in empirical sciences, since an hypothesis can be rejected but never proved.

Computer modeling has an advantage over other types of theoretical approaches.  A theory

can hide several flaws which are not revealed until one tries to program it on a computer.  A

model that has a computational implementation cannot hide undefined shortcuts.  Everything

must be defined, otherwise, it simply does not work.

In a second phase, the computational model was used to generate predictions.  A

computer simulation has the ability to react originally on new tasks.  This reaction is taken as

prediction that will be tested on humans.  If human empirical data are different from those of

the simulator, it simply means that the model has to be modified or even abandoned.  In the

meantime, the method contributed to science in providing new hypotheses.  Computer

modeling is a powerful means of generating new and original hypotheses.  For further

discussion about contributions of computational modeling to psychology, see Cleeremans &

French (1996) or Defays, French & Sougné (1999).

In every computational model, some decisions are taken a-priori as axioms.  For

symbolic models, symbols are taken as axioms, even if nobody has ever seen a symbol in the

brain.  However, these models can also help science in the understanding of complex

behavior.  Connectionist modeling uses some neuron-like elements with more or less

similarity to real neurons.  In this work, some characteristics of neurons have been chosen,

others have been rejected.  Inputs to the system have been set up to display a particular

structure.  How this structure is achieved is not the purpose of the study.  The specific

contribution of the present computer model is: “Given a particular input with a particular

structure, using neuron-like elements which have certain properties, can we achieve complex

high-level cognitive behavior?”  The computer model, called INFERNET, was designed,

programmed and tested to generate new hypotheses, which were then tested on human

participants.

In order to understand how a neurally inspired model like INFERNET behaves, it is

necessary to review a number of facts concerning neural transmission.  The next two sections

of this chapter describe the neural facts that inspired INFERNET.  The fourth section, will

provide a short review of computational modeling of neurons.  The fifth section will review

some of connectionist problems and their potential solutions.

1.2 Neurons and neural networks

The human brain is composed of about 10 to 100 billion neurons like those of Figure 1.1.  A

neuron is a particular cell composed of a soma with a cytoplasm and a nucleus like other

cells.  The neuron soma integrates the different signals which come from other neurons.  A

neuron has dendrites which are extensions of the soma.  Both dendrites and the membrane,

are the receptors of external signals.  There is generally one axon for each neuron which is
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prolonged by an axonal tree.  Axons are of various length and serve to transmit the signal to

the axonal terminals which contains neurotransmitters.  Neurotransmitters can be released in

the intercellular space.  They are the output devices of a neuron.  The basic input-output unit

for transmission of information between neurons is called the synapse.  A neuron is

connected to thousands of others, for example a pyramidal cell can have 10,000 inputs, while

a Purkinje cell can have 100,000 inputs.  A neuron which influences the state of another is

called “presynaptic neuron” while the influenced neuron is called “postsynaptic neuron”.

Figure 1.1
How neurons are

connected

Presynaptic neuron

Postsynaptic neuron

Dendrites

Axon

Synapse

Axonal Hilock

Axon terminals

Myelin

Synapses (see Figure 1.2) are critical devices for communication between neurons.

When the presynaptic signal arrives at the axon terminal, vesicles which contain molecules

called “neurotransmitters” open and release neurotransmitters into the intercellular space.

These neurotransmitters have the ability to fix on some receptor molecules on the

postsynaptic neuron dendrite. This process provokes the opening of ion channels.  When ion

channels are open, ions of a specific kind get into the cell or leave the cell.  This flux of ions

modifies the electrical potential of the cell.  Neurotransmitters have been categorized

according to the electrical effect they produce and the speed of their action.  Excitatory
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neurotransmitters raise the potential: AMPA has a fast but brief action.  AMPA channels let

NA+ enter into the cell.  NMDA are fast on but switch off slowly.  NMDA channels let NA+

and Ca2+ enter the cell.  Inhibitory transmitters decrease the potential. GABAA transmitters

are responsible for opening Cl- channels.  They have a fast action in letting Cl- enter the cell.

GABAB transmitters are responsible for opening K+ channels.  They have a slow action in

letting K+ leave the cell.

Figure 1.2
Synapse
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As excitatory channels open, the potential of the membrane slowly increases by the flow

of mainly Na+ which enters the cell.  When the potential reaches a certain threshold (around

-50 mv), suddenly, more Na+ channels open and the membrane potential is quickly raised to

±30mv.  The Na+ channels then close, and the K+ channels open, letting K+ leave the cell.

The potential quickly decreases to a minimum of around -75mv.  When K+ channels close,

membrane pumps expel Na+ and make K+ go back into the cell and the membrane potential

slowly returns to its resting potential around -70mv.  This process is known as the action

potential, as shown in Figure 1.3.  This action potential is also called “spike” or a neuron is

said to fire.  The quick rise and decrease of potential lasts 1 or 2 ms.
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Figure 1.3
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The action potential is a critical event, because it is the only way for a change in the

presynaptic cell membrane potential to cross the axonal hillock (see Figure 1.1) and to be

transmitted along the axon to the axon terminals.  In other words, without an action potential,

there is no neurotransmitter release, and no communication between neurons.

When a neuron has fired, it enters into an absolute refractory period in which, no matter

what the input, it won’t fire again.  This absolute refractory period is followed by a relative

refractory period.  Slowly the membrane resistance decreases, but it will need more

neurotransmitter release to obtain the same effect.  After ± 10ms the membrane resistance

reaches its resting value.  The Figure 1.4 illustrates this process.  The X axis represents the

time difference in ms between the firing time of the neuron t(f) and the time in consideration t.

What is the time required for a presynaptic action potential to have an effect on the

postsynaptic cell potential?  The first factor influencing this time course is the length of axon.

The speed of the potential transmission along a large myelinated axon is up to 120m/s while

for an unmyelinated axon it is about .5m/s.  This time is negligible for axons connecting close

neurons but for long projections linking distant cortical areas, in the adult human brain, it can

be up to 2ms.  The second factor is the synaptic delay: the process of neurotransmitter

release, crossing the synaptic cliff and binding on a receptor lasts at least 1ms.  Finally there

is the delay of dendritic integration.  The overall process lasts at least 4ms.
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Figure 1.4
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Figure 1.5 shows two curves: Excitatory Post-Synaptic Potential (EPSP) and Inhibitory

Post-Synaptic Potential (IPSP).  These curves illustrate how the potential of a postsynaptic

neuron reacts after a presynaptic action potential.  When the presynaptic neuron fires at time

tj(f), a few ms are required for the postsynaptic potential to change (y-axis).  This potential

rises if the signal is excitatory or decreases if the signal is inhibitory.  The signal quickly

reaches its maximum and slowly decreases.

Figure 1.5
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There are other temporal properties of neuron firing.  Some neurons tend to fire

rhythmically, producing oscillations.  A well known oscillation shown in Figure 1.6 is called

a gamma wave.  The lower curve follows the potential of a neuron over time.  The oscillation

frequency of this neuron is 40Hz, meaning that the neuron fires every 25 ms.  The upper

curve represents this 40Hz oscillation.
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Figure 1.6
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Oscillations often appear in bursts.  A neuron fires rhythmically for a certain amount of

time, and then stops firing for a while.  This is called a burst.  Bursts can reappear

rhythmically with a certain period.  In that case a second slower wave embeds the faster

wave.

Figure 1.7
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The Figure 1.7 shows successive and rhythmic bursts of gamma wave.  Each burst of

gamma wave is restarted every 250 ms.  The upper curve shows a theta wave of 4 Hz in
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which appears a gamma sub-cycle of 40 Hz.  The lower curve follows the potential of a

neuron following these embedded oscillations.

1.3 How does the brain represents the world?

1 . 3 . 1 What are the units of representation

How are objects, symbols, concepts represented in the brain?  Objects are composed of a

large number of features.  For example, a soccer ball has a spherical shape composed of

alternated black and white hexagons, with a particular texture typical of leather,...

The first hypothesis defended by Barlow (1972), is localist.  According to this theory, the

soccer ball is represented by a single cell which responds whenever this particular ball is

taken into consideration.  This unique cell is called a “grandmother cell”.  It means that

everyone has a particular cell representing her/his grandmother.  This kind of representation

raises some problems.  Imagine a soccer player knocking his head against the goal-post and

loosing his football ball cell.  What would this player do after getting up?  What would he try

to kick, the goal-post?  A second problem arises from this hypothesis.  Think about the

enormous number of feature combinations that are necessary for representing the multitude of

objects, concepts,... that humans deal with.  If every specific combination had a particular

corresponding cell, it would require infinitely many neurons.  A final problem is

generalization.  If every new object needs a new representing neuron, similar objects cannot

help in representation-building.

The second hypothesis involves fully distributed representations.  For Lashley (1950)

representation depends on the distribution of neuronal activity and not on particular

localization of activity.  The brain acts as a whole.  A particular object is represented as a

pattern of excitation which can affect, potentially, all the neurons in the brain.  The problem

with this type of fully distributed representation is interference.  How can different objects be

discriminated if the whole brain reacts to them at the same time?  How can the brain learn new

material without forgetting old material?  Fully distributed networks are prone to catastrophic

forgetting (see French, 1999).

The last hypothesis is sparse coding.  This hypothesis postulates limited distribution.  A

particular object is represented by the firing of a number of connected cells.  This is Hebb’s

(1949) description of cell assemblies.  A particular cell can participate in different cell

assemblies so the distribution quality is maintained.  This hypothesis is the most probable one

and has received empirical support.  A soccer player, waiting near the goal for a corner kick,

should be able to recognize the ball, evaluate its movement, its rotation, to decide when to

jump and kick or head the ball in an attempt to score a goal.  This ability requires the
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integration of a series of information.  Perceptually, it is well known that cortical area V1 is

sensitive to line orientations.  The rounded shape of the ball will provoke the firing of a series

of orientation cells.  But the ball is moving, and area V3 is known to react to moving shapes.

Furthermore, motor areas must be synchronized in order for the player to kick the ball at the

right time.  The whole representation needs successive activations of different cell

assemblies.  But there is still a problem: how do the different cells participating to a cell

assembly, sometimes far apart in the brain, group together to produce a meaningful whole?

This will be explained in the next section.

1 . 3 . 2 How does the brain communicate

How are neuron assemblies constituted?  How can we, as external observers, understand the

message involved in the neural activity pattern?  What is the code used by the brain?  There

are two main hypotheses: the rate code and the pulse code.

Rate codes

There are three ways of considering rate.  They differ according to the averaging procedure

that they use.  Rate can be computed on a single cell firing over time.  In this case, spikes are

counted and divided by the time elapsed, generally between 100 and 500 ms.  It has been

found that the number of spikes increases as the force applied to some muscle increases

(Adrian, 1926).  Thomas, Van Hulle & Vogels (1999) recorded several cells in the inferior

temporal cortex of a behaving monkey which has to categorize images into tree or non-tree

categories.  They showed that the majority of neurons responded to both categories.  They

found that what was crucial is not category specific neurons, but rather those neurons that are

responding more to one category than the other (higher rate).

This is an external observer point of view, but do neurons compute similar averages?

The first difficulty concerns the fact that behavioral reaction times are sometimes too fast to let

the system compute an average.  If neurons were firing at regular intervals when oscillating,

averages could theoretically be computed after 2 spikes.  But there is noise in oscillations.  To

obtain a good estimation of rate, it is necessary to compute the average over a longer period.

In conclusion, this spike rate cannot account for fast processing.

The second procedure for evaluating rate is repeatedly averaging single cell spikes.  The

experimenter records the spikes of a cell before and after a stimulation, and repeats the

experiment.  The average is obtained by dividing the total number of spikes by the number of

repetitions and the length of the recording intervals.  Results are often presented as a peri-

stimulus time histogram.  Figure 1.8 shows such a peri-stimulus time histogram.  The

stimulus is presented at time 0.  The maximum rate is recorded between 20 and 30 ms after
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the stimulus presentation.  This measure cannot be the code used by neurons to process

information.  Much of an organism reactions ought to be taken consecutevely to a single

stimulus presentation.  For example, a soccer player cannot wait several corner kicks before

jumping to try to catch the ball.

The third procedure for computing rate involves recording several neurons before

averaging.  This rate represents a population activity.  Some populations of neurons seem to

react to a particular class of stimuli.  If after stimulation, an experimenter records the firing of

each of these neurons and divides the sum by the number of involved neurons and by the

length of the recording time window, a rate measure is obtained.  The advantage of this

procedure is that it can be calculated from a short time window.  The problem raised by this

measure concerns the requirement of some kind of rate homogeneity which is not the case in

the brain.

Figure 1.8
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Pulse codes

These codes are based on precise timing of spikes.  The first potential code is latency.  The

idea is that the time separating a stimulus from the first spike of a neuron can carry

information.  Gawne, Kjaer, & Richmond (1996) recorded activity of striate cortex cells.

They showed that the latency was a function of the visual stimulus contrast.

The second code that neurons could use is phases.  Oscillation of a global variable like

population activity has been found in the hippocampus and cortical areas.  This background

oscillation can serve as a reference signal (see Figure 1.6).  A particular firing of a neuron can

be compared to this background oscillation.  Its particular position on the oscillation curve

can carry a particular code.

This coding scheme has received empirical support.  O’Keefe & Recce (1993) for

example, showed that phase codes contained spatial information independently of spike rate
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in the rat hippocampus.  In the olfactory system, some neurons fire preferentially in certain

phases of a large scale oscillation (Wehr & Laurent, 1996).

The third potential code is synchrony.  A set of neurons that represents micro-features of

a stimulus fire at the same time, and thereby allows the representation of the whole stimulus.

This hypothesis has received empirical support.  Engel, Kreiter, König & Singer (1991)

showed that if several objects make up a scene, distinct clusters of synchrony are formed,

each associated with a particular object.  Engel, König & Singer (1991) observed that

individual cells can rapidly change partners of synchrony when visual stimulus changes.

Synchrony is regularly measured by cross-correlation.  Figure 1.9 shows a cross-

correlogram.  This measure evaluates the correlation of 2 time series at successive lags.

Firing time of two neurons are recorded and constitute 2 time series.  If data are correlated at

lag 0, as in Figure 1.9, it means that the two neurons are prone to fire synchronously.

Synchrony is often associated with oscillation since it has been showed that gamma

oscillations enable synchronization (see Singer, 1993).

Figure 1.9
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Rate code and pulse code are not always opposed.  Observing synchrony of a population of

neurons within a short period of time means also that population firing rate will be high.  It is

also possible that different information could be coded by different means.

A final problem is how the brain reads the code expressed by neurons.  Physiologists as

external observers can detect regularities that can account for a potential code in the brain.

But people are capable of describing and observing their own thoughts.  This would imply

that humans have the possibility of actually reading the code.  Some hypotheses have been

proposed but will be discussed in the chapter 8.
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1.4 The 3 generations of artificial neural networks

Maass (1996a) has categorized artificial neural networks into 3 types which correspond to the

historical evolution in the domain of connectionist modeling.

1 . 4 . 1 McCulloch & Pitts

The first generation is represented by perceptrons (Rosenblatt, 1958), Hopfield networks

(Hopfield, 1982), and Boltzmann machines (Ackley, Hinton, & Sejnowski, 1985).  These

networks are based on McCulloch & Pitts neurons (McCulloch & Pitts, 1943; Pitts &

McCulloch, 1947).  Each artificial neurons outputs a binary value depending on a threshold

value.  According to Maass (1996a), these networks are universal for computation with

digital input and output, they can compute every boolean function, provided that they include

a single hidden layer.

1 . 4 . 2 Networks with analogical output

The second generation of artificial neural networks includes those which replace the threshold

output function by a sigmoid function or linear function which gives an analogical output.

Typical networks of this generation are feedforward or recurrent sigmoidal neural networks.

They also can compute boolean functions but mainly, they are universal for computation of

functions with analog input and output.  They also support powerful learning algorithms like

“feedforward backpropagation” (Rumelhart, Hinton & Williams, 1986).  One can consider

the input and output of such a neural network like the firing rate of biological neuron or

population of neurons.

1 . 4 . 3 Pulsed Networks

The third generation of artificial neural networks is called pulsed networks (see Maass &

Bishop, 1999).  They incorporate the properties of neuron firing described in section 1.1.

One of the basic pulsed models is the integrate-and-fire model, it is  defined by equation

(1.1) which describes how to calculate the state or potential Vi(t) of the node i at time t.

Vi (t) = wijε ij t − t j
( f )( )

t j
( f )∈Fj

∑
j∈Γ i

∑ − ηi t − ti
( f )( )

ti
( f )∈Fi

∑ (1.1)

A node i fires when its potential Vi(t) reaches the threshold Θ.  Fi is the set of all firing

times of node i: ti
( f ).  The set of presynaptic to i node is Γi = j j is presynaptic to i{ }.  Fj is the set of

all firing times of node j: t j
( f ) .  Connections weights linking j node to i node is wij .  The

kernel ε ij t − t j
( f )( ) expresses the postsynaptic potential function as shown in Figure 1.5.  While
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the kernel ηi t − ti
( f )( ) expresses the refractory period of node i caused by all previous spikes of

node i.  An example of the function has been given in Figure 1.4.  After a node has fired its

potential Vi is reset to zero.

This computational neuron acts like a simple electronic device (Figure 1.10) with a

capacitor C and two resistances Rsynaptic and Rleak.  The resistance Rsynaptic stands for the

connection weight: Wij and the refractory period i.e. the amount of neurotransmitter release

and the membrane resistance.  The resistance Rleak corresponds to a leakage factor, i.e. the

decreasing signal in the Post synaptic potential function (Figure 1.5).  After a presynaptic

action potential, the synaptic strength determines the size of the input current I, it acts as a

variable resistance Rsynaptic.  When the voltage across the capacitor C reaches the threshold

Θ, the circuit is shunted and a pulse is transmitted through the output O to other nodes.  This

can be compared to the trigger of a camera flash.  The capacitor has the power of

accumulating potential, but a resistance Rleak is responsible for slow loss of potential.   The

combination of leaky integrator and post-spike resetting are the basic properties of integrate-

and-fire neurons.

Figure 1.10
Electronic metaphor
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There are many variants of integrate-and-fire neurons: they can take into account the

absolute refractory period or not, they can use different approximations for the Post-Synaptic

Potential (PSP) function or refractoriness function, they can add noise on threshold, on the

reset, or on the integration of inputs.

Networks of integrate-and-fire neurons are a simplification of real neural networks.

There are more sophisticated models.  Hodgkin-Huxley based models take into account the
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difference in behavior of Na and K channels, as well as external and ionic currents.

Compartmental models consider a number of dendrite segments which act like a succession

of capacitor-resistance circuits.

The more details are taken into account in a computational model, the greater will be the

model’s computational demands.  A compartmental model for example is so demanding, that

a computer will not able to simulate the behavior of a large network.  The researcher has to

solve the problem of the trade-off between precision in a single neuron model and the

network complexity.  This can be solved by choosing the appropriate level of detail required

for the kind of task to be simulated.  If a researcher wants to model a single neuron

functioning, she should prefer compartmental models, but if she wants to simulate more

coarse grained or more elaborate mechanisms, such a detailed description would probably not

be useful.  In the present study, the aim is to simulate high-level cognitive behavior which

would probably not require many details, but would need large networks (many neuron-like

elements).  That is why INFERNET is based on simple integrate and fire neurons.

Maass (1996b) showed that spiking neural networks can compute an arbitrary boolean

circuit.  In addition, Maass (1996c) showed that spiking neural network can perform analog

computations.

1.5 Some problems for connectionist networks

What are the difficulties for a connectionist model to display complex cognitive behavior like

reasoning?  Traditional symbolic systems operate successfully with symbols in a logical

fashion, but people’s reasoning is not like theorem proving.  It more closely resembles a kind

of constraint satisfaction (Holyoak & Spellman 1993).  Symbolic models lack also of neural

plausibility.  The brain is not composed of symbols and rules.  Symbolic systems also suffer

from brittleness i.e. if the input does not match perfectly what is expected, the system cannot

produce a response.  On the other hand connectionist systems use interconnected neuron-like

elements, have a flexible way of functioning, are noise tolerant, have the ability to generalize,

and some of them have the ability to construct new representations.  However, connectionist

systems lack the ability to process symbols.  One of the main problems that connectionist

system must face is the binding problem.  There is a need for a solution that solves this

problem without losing qualities that give connectionist systems their power.

1 . 5 . 1 The binding problem

Humans effortlessly recognize objects, faces, sound, taste,... which are composed of many

features.  A red ball has a particular shape, color,...  Since shape and color are not processed

in the same cortical areas, there must be a mechanism able to bind the round shape with the
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red color and differentiate this ensemble from a blue cube nearby.  A particular face is

composed of a set of properties which have to be linked but must also be bound to a

particular name and be distinguished from other faces and other names.  Representing a

predicate and its arguments like “John loves Mary” requires correctly binding the filler “John”

to the role of “lover”, and the filler “Mary” to the role of “lovee”, without confusing them.

Representing a rule “If a then b” requires correctly binding “a” to the antecedent and “b” to

the consequent part of the rule.  As these examples show, binding is an essential mechanism

used in a varieties of tasks.

Symbolic systems have no problem with binding.  They simply define a variable and

assign a particular value to it.  There is no constraint on the binding process.

However, humans do have problems doing binding in some circumstances.  When the

time of visual presentation is short, illusory conjunctions are frequent.  People bind a feature

of one object with another object (Treisman & Schmidt, 1982).  Discriminating objects is

more difficult if objects share common features (Treisman & Gormican, 1988).  There is also

more illusory correlations between similar than dissimilar objects (Ivry & Prinzmetal, 1991).

How can an artificial neural network achieve binding?  Early critiques of connectionism

raised the problem.  How could a connectionist network represent the simple fact: “The red

rose is on a green table”?  Knowing that “red”, “green”, “rose” and “table” have a

representation in the system, the problem is to correctly associate “rose” with “red” and

“table” with “green” while avoiding “crosstalk”, i.e. avoiding the association between “table”

and “red” and between “rose” and “green”.  This problem was first introduced by Feldman

(1982).  The first idea that comes to mind is to increase connection weights between “rose”

nodes and “red” nodes and between “table” nodes and “green” nodes while decreasing other

connection weights.  But once these connection weights have been settled, linked nodes

cannot individually participate in other representation.  Nodes must be reusable for

representing another object like “yellow rose”.  The binding must occur dynamically.

The binding problem is then the inability to correctly associate fillers with roles, values

with variable, attributes with concepts, etc.  This problem arises as soon as one must

discriminate two pairs of associations (in the above example, “red-rose” and “green-table”).

Another problem related to the binding problem is the ability to represent n-ary predicates

(predicates with more than one argument).  McCarthy (1988) emphasized that connectionist

networks can only represent and discriminate unary predicates, (predicates with one

argument).  How can we represent a predicate and its arguments like “John loves Mary”?  If

one increases the connection weights between the predicate “love” and its arguments “John”

and “Mary”, how could the “lover” be distinguished from the “lovee”.  How “John loves

Mary” could be distinguished from “Mary loves John”?  A solution must involve the

discrimination of two pairs of associations: “John-lover” and “Mary-lovee”.
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Fodor & Pylyshyn (1988) point out a difficulty that arises from the binding problem.

They question the value of connectionism as model of cognition based on the impossibility

for connectionism to display what they called “systematicity”.  Systematicity is not well

defined by these authors.  They claim that human cognitive abilities are systematically linked

and appear by sets.  One can define it as the ability of applying particular knowledge to any

content whatsoever.  A series of examples are given.  These examples make reference to the

binding problem.  Fodor & Pylyshyn (1988) write that nobody has ever seen people able to

think that “John loves Mary” but unable to think that “Mary loves John”.  Nobody is able to

infer that “John went to the store” from “John, Mary, Susan, and Sally went to the store” but

unable to infer that “John went to the store” from “John, Mary and Susan went to the store”.

More formally, systematicity can be illustrated by these general examples: the ability to think

P(a,b) is linked to the ability to think P(b,a), the ability to think A from (A & B & C & D) is

linked to the ability to think A from (A & B & C).  But as Hadley (1996) states, does

systematicity prevail for more complex logical forms?  Does the ability to think ~A from ~B,

(A ⊃  B) is linked to the ability to think A from B, (~B ⊃  ~A)?  In reading Fodor & Pylyshyn

(1988) we have the impression that they must believe this.  But as will be shown in chapter

4, these latter two inferences, even formally equivalent, are not at all as well accepted by

people.  Fodor & Pylyshyn (1988) do not question the empirical relevance of what they state.

Research in cognitive psychology has demonstrated a great many content effects.  For

example, Ingram (1985) showed that children learning to talk do not display systematicity in

their predicate use.  The chapter 4 provides examples showing that people’s inferences are

sensitive to the content.

While symbolic systems are clearly too efficient in solving the binding problem compared

to humans, connectionist systems of the eighties, by contrast, were unable to do binding at

all.  Some solutions emerged and will be presented next.

1 . 5 . 2 Connectionist solutions to the binding problem

Grandmother cells

The first solution to this problem is to use one node for each possible association.

Unfortunately, this solution quickly becomes intractable due to combinatorial explosion.

This grandmother cell solution has already been discussed in section 1.3.1.

Coarse coding

One possible way to avoid combinatorial explosion is to use coarse coding (see Hinton,

McClelland & Rumelhart, 1986; McClelland, 1986; Touretsky & Hinton, 1988).  Coarse
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coding uses a subset of the population of nodes to code a particular value.  A node becomes

active if the input falls in its receptive field.  Coarse coding needs fewer nodes to represent

the same amount of information compared to purely localist codes.  However, this solution

only allows one variable to be bound at a time (see Mc Carthy, 1988).

Tensor product

Smolensky (1987, 1990) proposed the use of a tensor product representation of binding.

Tensor products are similar to outer products of vectors.  If one has to encode “John loves

Mary”, the “John” filler must be bound to the “lover” role.  Suppose that “lover” is

represented by the vector [1011] and “John” by the vector [0111], their binding will be

represented by:

lover ⊗ John =

0

0

0

0

1

0

1

1

1

0

1

1

1

0

1

1



















(1.2)

This representation of “John” in the role of “lover” would be clearly different than “John”

in the role of “lovee”.  Because “lovee” would be represented by a different vector [1010]

than “lover”.  “John” in the role of “lovee” would lead to this tensor product:

1 0 1 0[ ]⊗ 0 1 1 1[ ] =

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0



















(1.3)

According to Touretsky (1995), this architecture is a retrieval model and lacks inference

ability.  However, Halford, Wilson, Guo, Gayler, Wiles & Stewart (1994) modified

Smolensky initial model to perform analogical inferences.

Value associated to role and filler

ROBIN (Lange & Dyer, 1989a; Lange & Dyer, 1989b; Dyer, 1991; Lange, 1992) separates

roles from fillers.  Each fillers has an associated node that outputs a particular constant value

(called its signature).  Each role has an associated object node or binding node.  When a role

object node has the same activation as that of a concept signature, this concept is bound to the

role.  The Figure 1.11 illustrates how ROBIN can successfully encode “John loves Louise”

by correctly binding “John” to “Lover” and “Louise” to “lovee”.  The signature for “John”

has the same value as “lover” object node activation, while the “Louise” signature has the

same value as “lovee” object node activation.
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Figure 1.11
ROBIN binding is

achieved by a match
between activation
of role object node

and filler signature.
Lover

Lovee

Object

Object
Louise

Sign = 9.2

John

Sign = 3.9

Act=9.2

Act=3.9

A similar solution has been proposed by Sun (1992, 1995).  His CONSYDERR model is

a dual architecture, consisting of a localist network and a distributed network.  The former is

composed of nodes representing concepts and links between these concepts representing

rules.  Each concept node is linked to several nodes in another network which is distributed.

The nodes of the associated distributed network represent the features of the concept.

Variable binding is achieved by the use of a particular value which is passed along a link from

a role node to a filler node.

Activation similarity & spatial contiguity

COMPOSIT (see Barnden, 1991, 1992, 1994; Barnden & Srinivas, 1991) uses two

systems, a Long Term Memory and a Working Memory, both of which are connectionist

networks.  In this model, Working Memory is composed of several registers filled with

activation patterns from Long Term Memory.  Fillers and their roles are stored in registers

with 2 vectors.  One vector represents the filler (the symbol vector) the other vector

represents the role (highlighting vector).  Predicates, related roles and fillers are stored

contiguously and thus constitute a distinguishable ensemble that can be linked to a particular

role pertaining to another predicate.  A role can be linked to another role by the similarity of

their highlighting vectors.

The above solutions have different advantages and limits, but they all lack neural

plausibility.  We will now explore more neurally plausible solutions.

Binding by temporal frequency

Lange & Dyer (1989) proposed the use of temporal frequency (replacing signatures) for

binding.  To the best of our knowledge, these authors never actually implemented this

solution.  Surprisingly, this option has not yet been explored by cognitive scientists, even
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though some neurobiological empirical data seem to make it a potential neural mechanism for

binding (see Gerstner, Kreiter, Markram & Herz, 1997).  If the activation of a node is

considered to be its firing rate, binding by activation as done in CONSYDERR and ROBIN

can fall into this category.  However, firing rate and activation are two different parameters

and pulse networks could be used to test binding by temporal frequency.

Binding by synchrony

For temporal synchrony variable binding systems, nodes can be in two different states: they

can fire (“on”), or they can be at rest (“off”).  A node fires at a precise moment and transmits

activation to other connected nodes.  When a node activation reaches threshold, it fires.  A

concept, a predicate, an object or a role is activated when the nodes representing it fire.

Whenever two nodes (or two sets of nodes) representing two objects fire simultaneously,

these objects are temporarily associated.  On the other hand, if two nodes (or two sets of

nodes) fire in succession, they are discriminated.  This is how these systems solve the

binding problem.

A number of connectionist models have used synchrony for binding, among them:

BROADCAST-NET (Clossman, 1988), SHRUTI (Shastri & Ajjanagadde, 1993), LISA

(Hummel & Holyoak, 1997), and INFERNET (Sougné, 1996, 1997, 1998a 1998b, Sougné

& French, 1997). ART has also been adapted to bind by synchronization (Grossberg &

Somers, 1992).  Here follows the descriptions of the two main competitors of INFERNET:

SHRUTI and LISA.

SHRUTI

SHRUTI (Shastri & Ajjanagadde, 1993; Shastri, 1999) is a model designed to simulate the

kind of inferences that people make effortlessly and rapidly.  For example, while reading that

“John gave a book to Mary”, one can infer that “Mary owns a book”.  Representation in

SHRUTI is localist, a node represents an object, a role, a fact, a predicate, etc.  SHRUTI

uses different kinds of nodes which have different behaviors of which the main ones are

described below.  Predicates are represented by two nodes which are called enabler nodes

(e:).  One of these nodes serves to affirm the predicate, the other to negate the predicate.

When these node are on, they are on for a period of time covering the firing of successive

role node firings.  Arguments of a predicate are represented by nodes that fire for a shorter

time.  They fire after the starting of firing of the predicate enabler.  Different predicate role

nodes fire in succession.  The whole process is repeated over and over for a while.  This

serves to maintain the representation.  Figure 1.12 shows the representation of “John loves

Louise” in SHRUTI.  The affirmative enabler predicate node e:Loves is on for a period of

time.  Within this period, role nodes “Lover” and “Lovee” will fire in succession.  Binding
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occurs by synchrony of “John” node firing with “Lover” node firing and synchrony between

“Louise” node firing with “Lovee” node firing.

Inferences are performed by connecting different predicate enabler nodes and role nodes.

Activated predicate and role nodes transmit their activation to other predicate and role nodes.

A particular fact is encoded by an enabler node which will be activated only when role nodes

of a predicate are bound.  This is done by a set of excitatory and inhibitory connections.

SHRUTI has been used to simulate different tasks like implicit reasoning (Shastri &

Ajjanagadde, 1993), planning (Shastri, Grannes, Narayanan, & Feldman, 1998), parsing

(Henderson, 1994), etc.  However, the use of “grandmother” cells is questionable.  Even if

Shastri and Ajjanagadde (1993) describe a (non implemented) version of SHRUTI in which

each concept is represented by a set of nodes, the sets cannot be overlapping (i.e. one object

cannot share a common node with another object).

Figure 1.12
Node firing behavior

in SHRUTI
representing “John

loves Louise”
Lover

Lovee

e:Loves

e:Loves Neg

John

Louise
Time

Many features of SHRUTI seem redundant and this has some disadvantages. SHRUTI

makes use of a large number of different purpose nodes.  According to Ajjanagadde (1994)

himself it is not necessary.  But there are other problems related to knowledge abstraction and

interaction.  For example:

• Each predicate has its own role nodes.  If predicates cannot share the same role node,

how can phenomena like human analogy-making be explained?  Analogy has been

observed to be facilitated by objects that share the same role in different predicates.

• The distinction between role and object raises the question of how an object can

become, in certain contexts, a role. For example: “gift” as role in Offer(Gift, giver,

recip) and as object in “Mary gave John a gift”.

• Each fact is encoded by a particular node, how can SHRUTI explain interference

among a number of facts (leading to generalizations or even confabulations).
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• The solution to the problem of negation raises some questions.  There is no abstraction

of the negation because it is specific to a predicate.  How can SHRUTI could treat

double negations?  How could it apply negation to an object instead of a predicate?

These remarks raise the question about how to maintain advantages of connectionist

models over symbolic models in a model like SHRUTI.

SHRUTI cannot be considered as a pulse network  mainly because it does not use a Post-

Synaptic Potential function.  Transmission along a connection can be instantaneous and there

is no activation leakage.

LISA

LISA (Hummel & Holyoak, 1997) is a computational model of analogical inference and

schema induction.  It represents a proposition by a Long Term Memory (LTM) structure as

showed in Figure 1.13.

Each object and role is represented in Working Memory (WM) by an activation pattern of

semantic units.  These units are connected to role (lover, lovee) and object units (John,

Mary).  Semantically related roles or objects share semantic units: “John” and “Mary” are

human.  Sub-proposition units link roles to objects in LTM (John as lover and Mary as

lovee).  Proposition units link sub-propositions to encode a particular fact, such as, “John

loves Mary” in LTM.  Connections are bi-directional, enabling encoding a fact as

remembering a fact.  There is a learning algorithm that modifies connection weights in order

to encode a particular fact.

Figure 1.13
LISA encoding of

the fact “John loves
Mary”

love (John Mary)

John-
lover

Mary-
lovee

lover loveeJohn Mary

Proposition

Sub-proposition

Role & object

Semantic
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The network can also map connections between units of the same type (Proposition, sub-

proposition, Role, Objets) in different structures.  These connections permit analogy-making

to be performed in a structured fashion.

Variable binding in this model is achieved by synchrony.  When a particular object node

fires in synchrony with a role node they are bound.

LISA has the advantage of using simpler elements than SHRUTI and also uses

distributed representations.  Finally, it permits fact encoding via a learning algorithm. But

LISA is not a pulsed network.  There is no Post-Synaptic Potential function nor refractory

period.

Neurobiological justifications for synchrony as a binding mechanism

The advantage of synchrony variable binding lies in its neurobiological plausibility.  There is

considerable evidence for considering synchrony as the most plausible binding mechanism in

the brain (see Singer, 1993; Singer & Gray, 1995; Roelfsema, Engel, König & Singer, 1996;

Singer Engel, Kreiter, Munk, Neuenschwander & Roelfsema, 1997).  Spatially separated

neurons driven by the same stimulus have been found to synchronize.  This kind of

synchrony has been observed between distant cells in the same cortical area (Gray, König,

Engel, & Singer, 1989; Gray, Engel, König, & Singer, 1992; Engel, König, Gray & Singer,

1990), between cells in different cortical areas (Eckhorn, Bauer, Jorden, Brosch, Kruse,

Munk & Reitboeck, 1988; Engel, Kreiter, König & Singer, 1991; Murthy & Fetz, 1992;

Nelson, Salin, Munk, Arzi, & Bullier, 1992; Roelfsema, Engel, König & Singer, 1997), and

between cells in different hemispheres (Engel, König, Kreiter & Singer, 1991).

Synchrony seems to appear if neurons are driven by the same stimulus, and disappears in

the presence of two different stimuli.  Engel et al. (1990) have shown that individual cells can

rapidly change partners of synchrony if the stimulus changes.  If several objects make-up a

scene, distinct clusters of synchrony are formed, each associated with a particular object

(Engel, Kreiter, König & Singer, 1991).

While most of the empirical data involving synchronization have focused on the visual

cortex, synchronization has also been found outside the visual cortex.  Murthy & Fetz (1992)

observed synchronization between cells in somatosensory and motor cortex (see also Riehle,

Grün, Diesmann & Aertsen, 1997).  It has also be found in acoustic and frontal cortex

(Aertsen, Vaadia, Abeles, Ahissar & Bergman, 1992; Vaadia, Ahissar, Bergmann, &

Lavner, 1991), as well as in the hippocampus (Bragin, Jando, Nadasdy, Hetke, Wise, &

Busaki, 1994).  Roelfsema, Engel, König & Singer (1997) observed stimulus-dependent

synchronizations between visual and parietal cortex and between parietal and motor cortex of

an awake cat.
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Some specific connections seems to be responsible for synchronization.  Engel, König,

Kreiter & Singer (1991) showed that sectioning the corpus callosum abolished response

synchronization across area 17 of the two hemispheres.  Cortico-cortical connection are

probably those enabling synchronization.  These connections are established mostly post-

natally.  When strabismus is provoked in young kittens, cortico-cortical connections, which

normally connect areas irrespective of the dominant eye, develop to link only areas served by

the same eye (Löwel & Singer, 1992).  In that case, these authors have shown that

synchrony disappeared between area served by the two different eyes, and that coordination

of binocular signals vanished.

According to Singer (1993) and Singer et al. (1997) specific oscillations in the gamma

range seem to be the best candidate for enabling synchronization.

It would be erroneous to believe that all neural activity displays some sort of

synchronization.  Synchrony occurs between cells but this synchrony is also accompanied by

an unstructured activity which resembles noise.  We will see in chapter 7, that contrary to

common belief, noise can enhance convergence in complex dynamic system.

1 . 5 . 3 Other problems for connectionism

Multiple instantiation

Multiple instantiation (see Sougné, 1998 for a review) involves the simultaneous use of the

same parts of the knowledge base in different ways.  Knowing that “John is in love with

Louise” and that “Louise is in love with John”, one can readily infer that they should be

happy.  To arrive at this conclusion, one must instantiate the predicate “is in love with” and

the objects “John” and “Louise” twice.  Precisely how this is done is  the problem of multiple

instantiation.  This problem will be discussed in detail in chapter 6.

Recursive structure

Understanding the sentence: “The boy who kissed the girl who kissed the cat was my friend”

requires recursive predication.  A particular predicate must be bound to a particular role of

another predicate.  This point will be discussed in the Chapter 8.

1.6 Overview of the thesis and contribution

INFERNET is a pulsed network using neuronal elements of the integrate-and-fire type.  This

model is clearly inspired from real neuronal functioning.  In INFERNET, nodes can be in

two different states: they can fire (“on”), or they can be at rest (“off”).  A node fires at a
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precise moment and transmits activation to other connected nodes with some time course.

When a node activation or potential reaches a threshold, it emits a spike.  After firing, the

potential is reset to some resting value.  Chapter 2 describes in detail INFERNET structure

and functioning.

In INFERNET variable binding is achieved by synchrony.  How do synchrony and

related parameters constrain INFERNET’s cognitive abilities?  A series of tasks were given to

INFERNET.  Its reactions have been collected.  These provide predictions that were tested

with humans in an experimental setting.  INFERNET predictions were then compared to

human empirical data.

The following chapters compare INFERNET simulation results with human data.

INFERNET implements a short term memory as the activated part of long term memory.

By taking realistic neurobiological parameters, we show that short term memory capacity

must be limited.  Chapter 3 shows how INFERNET can display several features that human

short term memory studies reveal.

INFERNET is able to perform certain reasoning tasks.  But it is constrained by the length

of the reasoning chain, and, consequently, by double negation also.  Chapter 4 examines

how INFERNET is able to deal with conditional statements in a plausible manner.

Predicates and their arguments are coded by phases in INFERNET.  The more arguments

a predicate has, the more it will require discriminations among the phases.  Chapter 5 will

compare INFERNET and human performance on the processing of n-ary predicates.

A particular solution to the problem of multiple instantiation is proposed in INFERNET.

This solution puts constraints on the treatment of multiple instantiations.  Chapter 6 will

compare INFERNET and human performance on multiple instantiation.

In the brain many spikes apparently do not participate in any particular code, and could

therefore be considered as noise.  Chapter 7 presents several experiments with noise in

INFERNET.  It will be shown that the introduction of noise can improve INFERNET

performance.

Chapter 8 is devoted to conclusions and future research.

This work shows that taking neurobiological constraints and implementing them in a

computer program can provide potential explanations of human behavior and mental

processes, in addition to generating fruitful hypotheses for future research.



2 INFERNET

INFERNET is a pulsed network which implements a number of neurobiological constraints.

In order to understand how a neurally inspired model like INFERNET behaves, it is

necessary to keep in mind the introductory discussion in chapter 1, especially sections 1.2

and 1.4.3.

2.1 Connectivity and spikes

INFERNET is not a fully connected network, its structure is organized by clusters of nodes

which constitute subnets.  Each subnet is fully connected.  From each node of a subnet there

is a connection to every other node in the subnet.  Some of subnet nodes possess connections

to external subnet nodes.  This organization is shown in Figure 2.1.  It not only reduces the

computational demands of the program, but also correspond better to the organization of the

brain.  The brain is not fully connected, in particular, there are more intra-cortical area

connections than inter-cortical connections.

Figure 2.1
Subnets are intra

fully connected and
inter partly
connected

Subnet 1 Subnet 2

Subnet 3

Inter subnet
connection

Intra subnet
connection
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Each connection is either excitatory or inhibitory.  Excitatory connections raise the

potential of postsynaptic nodes, while inhibitory connections decrease the potential of

postsynaptic nodes.  Excitatory connections correspond to transmitters which open AMPA

and NMDA channels, while inhibitory connections correspond to transmitters which open

GABA channels.  Two variables affect each connection: weight and delay.  They are shown

in Figure 2.2.  The weight corresponds to synaptic strength between a presynaptic and

postsynaptic cell.  The weight between a presynaptic node j and a postsynaptic node i is

designated by wij.  Noise is added to this value and resulting noisy connection is denoted by

ŵij .  The delay d of a connection determines when the effect of the presynaptic node firing

will be maximum on the postsynaptic node.  There is also a random factor on the delay.  The

noisy delay is denoted by d̂ .  This delay corresponds to the axonal, synaptic and dendritic

delays of real neurons.

Figure 2.2
Weight and Delay

Presynaptic node Postsynaptic node

Long delay
High inhibitory weight

Short delay
Low inhibitory weight

Long delay
Low excitatory weight

Short delay
High excitatory weight

Presynaptic node Postsynaptic node

A signal, whether excitatory or inhibitory will be affected by a leakage factor.  When the

signal has reached its maximum, at each following step of 1 ms, the signal will be divided by

2.  Delays and leakage factor define EPSP or IPSP curve described in Figure 2.3.  The y-axis

refers to the postsynaptic node potential Vi.  The x-axis is the time difference in ms between
the time under consideration t and the time of the presynaptic node firing t j

( f ) .
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Figure 2.3
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The resulting postsynaptic (PSP) equation ε ij x( ) where x is the difference between the

time in consideration, the time of the presynaptic node firing and the noisy delay on the
connection x = t − t j

( f ) − d̂  is :

  
ε ij x( ) = 1

2x H (x) (2.1)

with: 
  
H (x) =

1if x ≥ 0

0if x < 0








(2.2)

In INFERNET, other kinds of connections are used.  Unlike most links, these latter links

act on connections rather than nodes (Hofstadter, 1984; French, 1995).  Moreover, each of

these connections can be excitatory or inhibitory.  There are six types of connections:

postsynaptic excitation, postsynaptic inhibition, presynaptic amplification of an excitation,

presynaptic inhibition of an excitation, presynaptic inhibition of an inhibition and presynaptic

amplification of an inhibition.  Figure 2.4 shows the entire set of connections.  In

INFERNET, for the simplicity of computation excitatory weights have a integer value

between 0 and 127 while inhibitory weights have a value between -127 and 0.  Moreover, an

excitatory connection cannot be modified to become inhibitory and vice-versa.

There are neurobiological justifications for these connections.  Some axon terminal

neurotransmitter releases act on synapses rather than dendrites.  Presynaptic inhibition acts on

axonal terminals by opening K+ or Cl- channels thus reducing the size of the voltage delivered

at the end of the axonal terminal.  Ca2+ entrance is reduced and neurotransmitter release is

decreased.  Presynaptic facilitation can occur when serotonin is released near an axon

terminal.  A second messenger cAMP then enters the terminal and increases the amount of

Ca2+ entering which increases neurotransmitter release.
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Figure 2.4
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When a node potential: Vi reaches a threshold Θ, it emits a spike.  Thereafter, the

potential is reset to its resting value.  Figure 2.5 illustrates a spike of INFERNET node.  This

is a simplification of the neuron action potential function presented in Figure 1.3.

Figure 2.5
A spike in

INFERNET.  (the
potential is reset to

the resting value
after the spike).
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After emitting a spike, a node enters a refractory period.  This correspond to the

membrane resistance of real neurons which increases after a spike.  In INFERNET, the
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function is simplified.  The resistance of node i depends only on the last spike of the node i:

t̂i
( f ) .  In more detail, the equation expressing the refractory period ηi u( ) , (where u is the

difference between the time in consideration and the time of the last spike of the node:

u = t − t̂i
( f ) ), is:

  
ηi u( ) = − −e

− ua −b[ ]





 ′H ( u ) Θ (2.3)

with 
  

′H u( ) =
∞,if 0 ≤ u < 1

1,otherwise








(2.4)

The parameter a is approximately equal to .8 and b to 4.5.  However, in the computer

program a list of integers was used to simplify computations.  This resistance is plotted in

Figure 2.6.  The absolute refractory period lasts 1 ms and the relative refractory period ends

10 ms after the spike.

Figure 2.6
Threshold function

in INFERNET
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All variables affecting the potential of a node have now been defined.  Equation (2.5)

express how the potential Vi
(t)of node i is calculate at each time step.

Vi
(t) = ŵij + ŵk→ij

tk
f( )∈Fk

∑ εk→ij
k∈Κij

∑ x( )










t j

( f )∈Fj

∑ ε ij x( )
j∈Γ i

∑ − ηi u( ) (2.5)

A node i fires when its potential Vi(t) reaches threshold Θ.  This potential is affected by

connection weigths coming from presynaptic node ŵij  but also by  the connections weigth

that modify this connection ̂wk→ij .  The set of presynaptic to i  node is

Γ i = j j is presynaptic to i{ } .  Fj is the set of all firing times of node j: t j
( f ) .  Noisy connection

weights linking j  node to i  node are ̂wij .  The set of presynaptic to ij  synapse is
Κij = k k is presynaptic to ij synapse{ } . These are connections that act on connection ij.   Fk is the set of all

firing times of node k: tk
( f ) .  These are the nodes from which start a connection acting on the

connection ij.   Noisy connection weight linking k node to ij  synapse is ̂wk→ij .  The equations

ε ij x( ) and εk→ij x( )  expresses the postsynaptic potential function as shown in Figure 2.3.



30 Chapter 2: INFERNET

While the equation ηi u( )  express the refractory period of node i caused by the previous

spikes of node i.

A comment is necessary about threshold Θ.  Random noise is added to its value.  The

firing of a node requires at least 3 concomitant full excitatory inputs and at most 7

concomitant full excitatory inputs, if the node is out of refractory period.  Figure 2.7

illustrates this process.  In agreement with real neural networks, a single synapse cannot

provoke a postsynaptic action potential.  In reality, a single cortical synapse raises the

potential of a postsynaptic neuron by 0.1 to 1 mV (Abeles, Prut, Bergman, Vaadia, &

Aertsen, 1993).

Figure 2.7
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2.2 Synchrony

As described in the previous section, node firing occurs at a precise moment in the ms range.

One can record firing time of several nodes.  In Figure 2.8, three node spikes are displayed.

The spikes of nodes b and c are synchronous while node a spike is asynchronous with node

b and c spikes.  Synchronous activity in INFERNET is the signal of a particular code.  It

simply means that these nodes belongs together.

Figure 2.8
Synchrony: Nodes b

and c spikes are
synchronous

 

Time

Node a

Node b

Node c
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2.3 Phases

INFERNET has the ability to display rhythmic patterns of node-firing.  A node can fire

regularly for a period of time.  It displays a particular oscillation pattern.  In Figure 2.9, three

nodes fire regularly at an identical frequency.  The oscillation displayed on the upper part of

the figure is the oscillation corresponding to node c firing.  This oscillation can be taken as a

reference.  Nodes a and b fire at different phases comparing to node c.  In INFERNET, this

is a sign of discrimination.

This rhythmic pattern corresponds to well known 40 Hz gamma waves which have been

found to enable synchronization by experiments in slices. (see Singer, Engel, Kreiter, Munk,

Neuenschwander, & Roelfsema, 1997).  Eckhorn, Bauer, Jorden, Brosch, Kruse, Munk &

Reitboeck (1988) recorded such oscillations with micro-electrodes in the visual cortex of the

anesthetized cat when stimuli were presented.  These gamma waves have also been observed

to be associated with attention (Wang & Rinzel, 1995) and with associative memory (Wilson

& Shepherd, 1995).    The lower limit of gamma wave frequency is 30Hz and the upper limit

varies according to various authors from 70Hz (Abeles, Prut, Bergman, Vaadia, & Aertsen,

1993) to 100 Hz (Wilson & Shepherd, 1995).  The temporal gap between 2 spikes of a node

is therefore from 10-14 to 33 ms.

Figure 2.9
The 3 nodes belongs

to different phases
with respect to the

oscillation Node a

Node b

Node c

Time

Oscillation

In INFERNET, this rhythmic pattern lasts a limited period of time.  After while the node

enters a resting period.  After the resting period, the rhythmic pattern can restart.  Such a

rhythmic activity corresponds to bursts of a gamma wave.  Such bursts are shown in Figure

2.10 (lower curve).  The resulting oscillation pattern shows gamma subcycles in a theta cycle

(upper curve).  Theta waves have been observed to be associated with visual short term

memory tasks in monkeys (Nakamura,  Mikami & Kubota, 1992). This wave was

maintained as long as attention was required.  Theta wave duration can exceed 10 seconds.

In INFERNET, this wave serves to maintain information.
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Figure 2.10
INFERNET gamma

subcycles in a theta
oscillation
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2.4 Symbols

Symbols are represented by a set of nodes that can be compared to Hebb (1949) cell

assembly.  As shown in Figure 2.11, a particular node can participate in different symbols or

cell assemblies (different node colors in the figure).  But a node cannot participate in every

cell assembly.  The representation is distributed, but not fully distributed (In fact, it is quite

sparsely distributed).  Nodes participating in a particular symbol do not need to be in the

same topographical area, but can belong to different subnets.

Figure 2.11
Each color stands

for a different
assembly.  A node

can participate in
different assemblies

Subnet 1 Subnet 2

Subnet 3

The activation of a symbol is achieved by the firing of nodes which participate in this

symbol.  But even if every node in an assembly fires, it does not mean that this symbol is

active.  These nodes have to fire in close synchrony for the symbol to be active.  Figure 2.12
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illustrates three cases by displaying histograms representing the percentage of nodes, in an

assembly, firing within a certain amount of time.  In the first case, nodes belonging to a

particular symbol fire in close synchrony.  This symbol is highly activated.  In the second

case, nodes belonging to a symbol fire less synchronously.  This symbol is less active than

the first one.  In final case, nodes belonging to the symbol do not fire in synchrony, the

distribution of node firing times is too spread out in time.  This symbol is not activated.

Figure 2.12
A symbol is

activated when
nodes participating
in the assembly fire
in close synchrony
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A representation of symbols by synchronous firing of nodes belonging to an assembly

may be considered very speculative.  Suffice it to say that this hypothesis has received

neurobiological empirical support.  Engel, Kreiter, König & Singer (1991) showed that if

several objects make-up a scene, distinct clusters of synchrony are formed, each associated

with a particular object.  Engel, König & Singer (1991) observed that individual cells can

rapidly change partners of synchrony when the visual stimulus changes.

2.5 Binding, discrimination and predicates

We have seen that each symbol is represented by a cluster of nodes firing in synchrony.

Symbols are then bound together by synchronous firing too.  For example, to represent

associated symbols like “red rose”, nodes belonging to “red” must fire synchronously with

nodes belonging to “rose” (Figure 2.13).  This is how INFERNET represents attribute

binding.

This hypothesis was first proposed by von der Malsburg (1981).  There is now

neurobiological evidence for considering synchrony as a possible binding mechanism in the

brain.  In particular, synchrony has been observed between distant cells in the same cortical
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area (Gray, König, Engel, & Singer, 1989; Engel, König, Gray, & Singer, 1990), between

cells in different cortical areas (Eckhorn, et al., 1988; Engel, Kreiter, König & Singer, 1991;

Murthy & Fetz, 1992; Nelson, Salin, Munk, Arzi, & Bullier, 1992), and even between cells

in different hemispheres (Engel, König, Kreiter, & Singer, 1991).  (See also section 1.5.2.)

Figure 2.13
Binding and

discrimination

Rose

Red

Lawn

Green

ms

Phase 1 Phase 2

In INFERNET discrimination is achieved by successive synchronies, for example, to

discriminate a red rose from a green lawn.  The nodes belonging to “red” and “rose” must fire

in synchrony and those corresponding to “green” and “lawn” must also fire in synchrony.

Further, these two sets of nodes must fire asynchronously for “the red rose” to be

discriminated from “the green lawn” (see Figure 2.13).

Neurobiologists have found that if a number of different objects make up a scene, distinct

windows of synchrony are formed, each associated with a particular object (Engel, Kreiter,

König & Singer, 1991).

In INFERNET, predicates and roles are linked by a specific temporal order.  The

activation of a predicate is always followed by the successive activation of its different roles,

each of which is assigned to a particular window of synchrony.  Figure 2.14, shows how

INFERNET codes “John loves Mary”.  The firing of the predicate “love” is followed by the

firing of the arguments roles “lover” and “lovee”.  Nodes representing “John” fire in

synchrony with those of “lover” while nodes representing “Mary” fire in synchrony with

“lovee” nodes.
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Figure 2.14
Predicate and role

binding Love

Lover

Lovee

Phase 1 Phase 2

John

Mary

Phase 3

A number of neurobiological parameters are involved in a representation that relies on

clusters of nodes firing simultaneously.  The first is the frequency of oscillation.  As already

stated, some specific oscillatory activities seem to facilitate synchronization (Singer, 1995,

Roelfsema, Engel, König, & Singer, 1996, Singer, 1993).  In INFERNET once a node is

activated, it tends (but not necessarily) to begin oscillating at a gamma frequency range,

whose lower limit is 30Hz and the upper limit varies according to various authors from 70Hz

(Abeles et al., 1993), 80 Hz (MacKay, 1997) to 100 Hz (Wilson & Shepherd, 1995).  The

temporal gap between 2 spikes of a node is therefore from 10 to 33 ms.  These gamma waves

seem to be the best candidate for enabling synchronization and binding (Singer, 1993).  The

second key parameter is the precision of the synchrony at this frequency range.  According to

Singer and Gray (1995) this precision is between 4 to 6 ms., while for Abeles et al. (1993), it

is about 5 ms, sometimes less, and depends on the frequency of oscillation.  This allows us

to approximate the number of windows of synchrony or phases that can be differentiated,

i.e.,  25/5 = 5, based on a typical frequency of 40Hz.  This constraint is very important

because the more the system needs to discriminate objects at a particular moment, the more

precise the synchrony should be.  Since this parameter is bounded, it can lead to overload in

which windows of synchrony are no longer distinguishable.  Therefore, the number of

distinct items and the number of predicate arguments are limited.  The precision of the

synchrony in INFERNET is regulated by the noise on delays (see section 2.1).  This

common effect of oscillation frequency and precision of the synchrony will lead INFERNET

to make predictions about Short term memory that will be treated in chapter 3 and about the

number of predicates arguments that will be treated in chapter 5.  Similar explanations for the
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brain’s ability to store a limited number of short-term memory items can be found in Lisman

& Idiart (1995), Jensen & Lisman (1996), Shastri & Ajjanagadde (1993), Sougné (1996),

Sougné & French (1997), Jensen & Lisman (1998), Luck & Vogel (1998)

After receiving a premise like “John loves Mary” INFERNET should be able to answer a

question like “Who is the lover?”.  Therefore a mechanism should be able to link roles like

“lover” and fillers like “John” for a limited amount of time.  This is done in INFERNET by

the modification of connection weights and delays.  During the premise-encoding phase,

connection weights and delays will be modified by a Hebbian learning rule to reproduce

synchronies.  In Figure 2.14, “John” is synchronized with “Lover”.  The connections

strength between the filler nodes representing “John” and role nodes representing “lover” will

be increased.  The delays will be adjusted to enable synchronous firing.  After a number of

connection modifications, the connections from “John” nodes will be sufficient for the

“lover” nodes to fire in synchrony whenever “John” nodes fire.  Similarly, connections from

“lover” nodes will be sufficient for the “John” nodes to fire in synchrony whenever “lover”

nodes fire.

The increase of connection strength between node i and node j is defined by equations

(2.6).  This equation expresses the fact that at every synchronous firing of nodes i and j the

weights wij  as well as wji  will increase by a value ∆wij  which takes the value of a constant c

in that case.

∆wij
+ = c,if t j

f( ) − ti
f( )( ) = 0

0,otherwise












(2.6)

The connection delays are modified according to equation (2.7).  This equation expresses

the following mechanism.  At every synchronous firing of nodes i and j the delays dij  as well
as dji will take the value dij

new  = ∆tγ .  ∆tγ  is defined by the gamma wave frequency.   If the

oscillation has a frequency of 40Hz, ∆tγ  is 25.

dij
new = ∆tγ ,if t j

f( ) − ti
f( )( ) = 0

0,otherwise












(2.7)

INFERNET forgets also bindings.  It is necessary to make the system ready for encoding

a new fact.  For example, if in a first phase the premise “John loves Mary” is presented to

INFERNET, and in a second phase a new premise is presented: “Mark loves Gill”.  The

system ought to have forgotten bindings between “lover” and “John” and between “lovee”

and “Mary” to avoid spurious representations like “John loves Gill”.  This process is done by

decreasing the value of connection strength.  The decrease of connection weights is defined

by equation (2.8).  There will be no decrease if both node i and j fire inside a theta wave in
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question.  If one or both do not fire inside the same period, a constant e will be subtracted

from their connections weight wij   and wji .

  
∆wij

− =
0,if F j

θ andF i
θ ≠ ∅

−e,otherwise









(2.8)

  F j
θ  is the set of firing times of node j in a period defined by a theta wave, while   F i

θ   is

the set of firing times of node i in the same period.

There is, however, a further detail to be noted.  Modifications in  connections strength

and associated delays will never happen if the connection weights are 127, 0 or -127, i.e.,

values reserved for the encoding of Long Term Knowledge.  All other connections can be

modified but are bounded.  These latter connection are modifiable.  Modifiable excitatory

connection cannot be greater than 126 or less than 15.  Modifiable inhibitory connections

cannot be greater than -15 and less than -126.  Finally, since INFERNET network is not fully

connected, some connections do not exist and cannot be affected by learning.

This fast and transient modifications of weights is comparable to neurobiological short-

term potentiation by Hebbian learning.

2.6 Temporal Gates and coincidence detection

In the previous section, it was noted that some connection weight values are reserved for the

encoding of Long Term Knowledge.  This knowledge is encoded by hand.  This enables the

experimenter to encode rules and facts.  Examples of Long Term Knowledge Base will be

given in chapters 3, 4, 5, and 6.  In this section, the basic types of rules will be presented.

They are called temporal AND-gate, OR-gate, and XOR-gate.  These gates permit the

encoding of complex types of knowledge, like those presented in chapter 3 to 6.

The first type of gate, presented in Figure 2.15, is the AND-gate.  This gate only opens

when two events happen.  In the figure, node C only fires if A nodes fire 10 ms before B

nodes.  This gate serves to detect the conjunction of events in a particular order.  This is a

temporal gate.  If the B nodes fire alone, the C node will get two excitatory signals and one

inhibitory signal.  Even if all B nodes fire together, this will not be sufficient for the node C

to fire.  The same lack of firing of the C node will occur if A nodes fire solely.  However, if

B nodes fire 10 ms later than A nodes, the inhibitory connection from one of the B nodes will

be inhibited (by the firing of A nodes).  Excitatory connections from B nodes to C node will

be amplified, node C will get two additional excitatory inputs from one of the A nodes which

will be amplified by one of the B nodes, and the inhibitory connection from one of the A

nodes will be inhibited.  It is equivalent to the C node getting 8 simultaneous excitatory

inputs.  Under these circumstances, the C node will necessarily fire.
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Figure 2.15
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Figure 2.16 presents a second type of gate, the OR-gate.  It opens whenever at least one

of the two input events occurs.  In the figure, node C will fire, if the A nodes fire, or if the B

nodes fire or if both fire.

Figure 2.16
An example of OR-

Gate, node C will
fire, if A nodes fire, if

B nodes fire or if A
and B nodes fire

A

B
COR

Figure 2.17 presents XOR-gate.  This gate only opens if one event happens

independently of another.  In the figure, if the A nodes fire, node C will fire 10 ms later,

unless the B nodes fire in synchrony with the A nodes.  If the B nodes fire, node C will fire

10 ms later unless the A nodes fire in synchrony with B nodes.

Figure 2.17
An example of XOR-
Gate, node C will not

fire if  the A nodes
fire in synchrony

with  the B nodes.

A

B
CXOR

1010
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Gates are able to detect the coincident occurrence of events.  There is evidence that

neurons can be sensitive to temporal relations among inputs.  According to Abeles et al.

(1993), people hearing a sound from a source situated 1 degree to the right of their face, at a

distance of 1 meter, will receive the acoustic signal at their right ear 12 µs before the left ear.

This means that detecting the source of a sound requires very accurate temporal detection.

According to Calvin (1983), throwing a projectile at a 20cm wide target, from a distance of 7

meters, requires an accuracy in the release time of less than 1 ms.  We saw in section 2.5

empirical evidence to support precise synchronization of neuronal response.  Moreover,

Abeles et al. (1993), Abeles (1991) findings on syn-fire chains indicate very precise temporal

behavior of neuron firings.  These researchers have recorded spike timing of different cortical

cells.  In particular, they observed the following kind of pattern: when a neuron A fired,

neuron B would fire 151ms later while neuron C would fire 289ms later with a precision

across trials of 1 ms!  Such long delays, would require dozens of transmission delays from

presynaptic (A) to postsynaptic (C) neuron.  The mechanism proposed by Abeles et al.

(1993) for generating such precise delayed synchronization has been called syn-fire chains.

Since cortical synapses are relatively weak, inputs to cells must arrive at the same time, and

so make a very precise temporal filter.  This mechanism is very close to a succession of

temporal gates.  More details about coincidence detection in the brain can be found in

Konnerth, Tsien, Mikoshiba, & Altman (1996).

Each gate in INFERNET has a probability of misfunction.  As the number of successive

required gates to perform a task increases, the probability of successfully performing the task

decreases.  This hypotheses will be tested and discussed in chapter 4.

2.7 Multiple instantiation

Classically, in a connectionist network there is no separation, as there is in symbolic artificial

intelligence models, between the Long Term Knowledge Base (LTKB) and a temporary store

(or a working area) in which copies of pieces of LTKB are loaded before transformation.  In

these models, activation of the LTKB creates Short Term Memory (STM).  For systems that

do separate LTKB and STM (most traditional AI models), multiple instantiation is not a

problem since the system can make as many copies of LTKB facts as needed and load them

into STM.  Without this copy-and-load process, neural nets suffer from “crosstalk.”

(Feldman, 1982).  Simultaneous processing of “John loves Mary” and “Gary loves Rita” can

lead to pseudo-memories (Dyer, 1991) like “John loves Rita”.  Even if we assume that John

and Gary are correctly bound to the role of lover, and Mary and Rita to the role of lovee, both

men and both women remain bound to the same respective roles.  The system need to

distinguish the two facts by separating the two identical predicates and their respective roles

bindings.
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The problem of multiple instantiation arises in localist networks if two instantiations differ

by more than the value of one argument.  For example, “Jack eats eggs and Jack eats fish”

does not require separate instances of the predicate “eats” since this statement can be reduced

to “Jack eats eggs and fish”.  However, when two sets of two contents must be bound to

identical pairs of roles, the system must be able to handle two copies of the predicate and

argument slots.  For example, “Jack eats eggs and Mary eats fish” cannot be reduced to “Jack

and Mary eat eggs and fish,” otherwise one cannot distinguish who eats what.

The problem for distributed representations is even more difficult.  Multiple instantiation

problems appear as soon as one node must be shared by entities that have to be differentiated.

If an n-ary predicate must be represented where either predicate roles or their fillers need to

use a common node, this node will have to be linked to different entities.  In systems of

distributed representations, the problem will be a function of the proportion of shared nodes.

Multiple instantiation will be discussed extensively in chapter 6.  Here we will present the

basic mechanism of multiple instantiation in INFERNET.

In INFERNET, nodes pertaining to a doubly instantiated object will be associated with

two oscillations while those objects that are singly instantiated will be associated with one

oscillation.  This makes doubly instantiated object nodes fire twice while singly instantiated

object nodes fire once.  This means that each new instance will occupy a new phase to avoid

crosstalk.  Figure 2.18 illustrates how INFERNET deals with multiple instantiations.  In this

figure, a particular node activity is plotted (lower curve) with reference to its oscillation

pattern (upper curve).  Initially, we can imagine that this node is bound to a particular node

firing in synchrony and having the same oscillation pattern.  After three spikes, another

pattern of firing is added, following an additional oscillation pattern which is represented in

the upper curve.  The additional firing of this node enables it to also bind with a second,

different node.

Figure 2.18
Multiple instantiation

by period doubling

oscillation

Spikes

This solution can be compared to the neural phenomenon of bifurcation by period

doubling (Canavier, Clark, & Byrne, 1990; Glass, & Mackay, 1988), whereby a stable
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oscillatory state can lose its stability, giving rise to a new stable state with doubled period.

Figure 2.18 shows the point at which the bifurcation occurs.  The number of instantiations

that INFERNET can support is, limited to 2 or 3 by the precision of the synchrony and

refractory period.  This puts processing constraints on multiple instantiation which will be

tested in chapter 6. INFERNET’s ability to process a greater number of instantiations will be

explained in section 6.3

2.8 Treatment of Simulator Data

When the simulator runs, it records in a file for each ms in a gamma cycle, for each gamma

cycle in a theta cycle and for each theta cycle, which nodes are firing.  This file contains all

the data concerning node firing times.

These data can be considered as a time series in which successive values represent

successive measurements taken at equal lag intervals.  Since INFERNET represents binding

by synchrony, and relations between predicate and arguments by delayed synchrony, the

measure that we need to use must be sensitive to synchrony and to lags among nodes firing.

In neuroscience, such measurements are quite common.  One of the most popular techniques

is cross-correlation.  This technique has been in use since the early 1970’s (Moore, Segundo,

Perkel & Levitan, 1970) and is still used (Singer, Engel, Kreiter, Munk, Neuenschwander &

Roelfsema, 1997).  This measure evaluates the correlation of 2 time series at successive lags.

Firing times of two neurons are recorded and constitute 2 time series.  If data are correlated at

lag 0, it means that the two neurons are prone to fire synchronously.  If data are correlated

around a lag of 10 ms, it means that the firing of the first neuron tends to precede the firing of

the second neuron by 10 ms.

There is however a problem with this technique.  Correlation is known to be sometimes a

spurious measure.  Imagine that we have collected two node firing times and obtained these 2

time series.

[0 0 0 0 0 0 0 0 20 80 20 0 0 0 0 0]  for the i node, and

[0 0 0 0 0 0 0 0 2  8  2  0 0 0 1 0]  for the j node.

Their correlation r = .992536

This almost perfect correlation does not take into account the fact that the j node almost

never fires, it only accounts for the moment of firing.

For this reason, some researchers doubt the relation between correlation and synchrony,

(see Brody, 1998, 1999a, 1999b) for a recent review of this topic).  To eliminate the

problem, some researchers have proposed considering the relative number of spikes (see

Golomb, Wang & Rinzel, 1994).
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Data presented in previous studies (Sougné, 1998b; Sougné, 1999) were based on some

arbitrary threshold.  Two nodes were considered synchronous if they fired more than 4 times

in a theta cycle, within an interval of less than 3 ms.  The measure used in the present study is

a correlation corrected by the ratio of the two nodes’ spike density: the observed density

divided by the ideal density or the density of input nodes (this ensures that the denominator is

≥ than the numerator).  This correction provides a normalized correlation.  For the example

provided above, the normalized correlation is:.9925362 13
120

 = .326684, which is a far more

realistic.

In the following sections are described how proportions of response and reaction times

are computed.  Two files are saved by INFERNET: the first contains data when learning

occurs, the second contains the data of INFERNET’s response to a question.  The first file

will be used to calculate reaction times, the second to calculate proportions of responses.

2 . 8 . 1 Proportion of response

To obtain the proportion of a particular response, the ideal pattern of response is defined or

the input pattern is observed this is the reference pattern.  This pattern is compared to the

observed pattern of response.  This observed pattern is obtained by counting the precise

moment of a particular node firing within each gamma cycle.  A sequence of length

corresponding to the number of ms in a gamma cycle is obtained.  The correlation between

the reference pattern and the observed one is computed.  This correlation is normalized by

multiplying it by the ratio of the number of observed spikes and the number of spikes in the

reference pattern.  This process is repeated for each node that participates to a particular

response.  The combination of obtained correlations is performed by computing the square

root of the mean of squared correlations (with taking care of signs).  This results is taken as

the proportion of response.  The details are following.

Define ∆tγ  as the delay in ms corresponding to a gamma wave.  If the oscillation has a

frequency of 40Hz, ∆tγ  is 25.  For each node, and for each gamma cycle, we can construct a

vector of binary values of length ∆tγ , the firing vector of node i is 
  

r
Fiγ :

 
  

r
Fiγ = f i

1( ) , f i
2( ) ,..., f i

∆tγ( )





(2.9)

where f i
t( ) =

1,if nodei firesat time t (inms)

0,otherwise








This vector contains the information about a node firing times in a gamma cycle from the
first ms to the ∆tγ  ms.

The sum   
r
Xi  of these vectors across every gamma cycle and theta cycle for the node i is:
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r
Xi =

r
Fiγ

q=1

nγ

∑
p=1

nθ

∑ (2.10)

Where nθ   is the number of theta cycles, and nγ  is the number of gamma cycle in a theta

cycle.

The sum vector of i node contains ∆tγ  integers zt:

  

r
Xi = z1,z2 ,...,z∆tγ[ ] (2.11)

The sum vector of j node contains ∆tγ  integers yt:

  

r
X j = y1, y2 ,..., y∆tγ[ ] (2.12)

The correlation between the two sequences   

r
Xi  and   

r
X j  is

r =
∆tγ zt yt

t=1

∆tγ

∑ − zt yt
t=1

∆tγ

∑
t=1

∆tγ

∑

∆tγ zt
2 − zt

t=1

∆tγ

∑






2

t=1

∆tγ

∑












∆tγ yt
2 − yt

t=1

∆tγ

∑






2

t=1

∆tγ

∑












(2.13)

zi = ith element of the sequence   

r
Xi

yi = ith element of the sequence   

r
X j

∆tγ = The delay in ms defined by a gamma wave

S is the set of binding pairs that are required to consider that a response belongs to a

category.

S = A1,B1( ), A1,B1( ),... Ac ,Bc( ) (2.14)

The normalized signed square correlation (or signed coefficient of determination) between

a set of paired cell assemblies S is:

    

ρS =
r r

Xi,
r
Xj

2 H r r
Xi,

r
Xj







yt∑
zt∑r

Xj ∈B
∑r

Xi∈A
∑

nAnB



















AB∈S
∏ (2.15)

where 
    
H r r

Xi,
r
Xj





 =

1,if r r
Xi,

r
Xj

≥ 0

−1,if r r
Xi,

r
Xj

< 0












nA is the number of node in A cell assembly

nB is the number of node in B cell assembly
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The normalization term: yt∑
zt∑

  is the ratio of the two sets of nodes spike density.  The

numerator correspond to the observed density and the denominator to the reference density.

Note the use of the mean of the signed square normalized correlation.  The reason is that

correlations are not additive.  The correlation formula contains a square root.  Squaring

correlation removes it and permits addition and mean calculation.

The proportion of response containing S pairs of associations is:

  

H ρS( ) H ρS( ) ρS
n
∑

n
(2.16)

where n is the number of simulator runs and 
  
H ρS( )  is a stepwise function which take care

of the sign:

  
H ρS( ) =

1,if ρS ≥ 0

−1,if ρS < 0









2 . 8 . 2 Reaction times

The principle for calculating reaction times is the same as for proportions of responses.  The

difference is that correlations are continuously monitored after each theta cycle.  When the

correlation reaches a threshold, a reaction time is returned.  The second difference is that the

data that are taken into account are those when INFERNET learns bindings.  Recall that when

INFERNET learns bindings, after each theta cycle containing the premises, a question is

presented with all learning turned off.  This process enables monitoring of learning.

The first step is to compute ρS  for each theta cycle, and then add them successively.

When the sum reaches a threshold (1.5), the number of theta cycles nθ explored so far is

returned.  The ρS  is then computed for each gamma cycle inside this theta cycle.  They are

added successively and when this addition reaches a threshold (.25) the number of gamma

cycles explored so far nγ is returned.  The reaction time is then:

RT = nθ ∆tθ + nγ ∆tγ (2.17)

where ∆tθ  is the delay in ms defined by a theta wave, and ∆tγ  is the delay in ms defined

by a gamma wave.

If the above thresholds are not reached, it means that the simulator could not find any

response to the question, a constant is then returned.



3 Short term memory as the
activated part of long term
memory

Cognitive psychology distinguishes sensory memory, short term memory and long term

memory.  Sensory memory is the very short term maintainance of the perceptual signal.

Short term memory (STM) refers to the memory that is maintained during the human

psychological present, and long term memory (LTM) is the storage of the past experiences.

The concept of short term memory has generally been replaced by the concept of working

memory (WM), (Baddeley, 1986).  The idea is that the transient and present memory is not a

passive store; rather, it permits and enables information processing.  When referring to

working memory we will adopt the definition of Cowan (1998): “the collection of mental

processes that permit information to be held temporarily in an accessible state, in the

service of some mental task.”  Working memory does involve the storage of information

but also all mechanisms that help this information to be used or to be maintained, in

particular, the process of attention.  When the storage itself will be referred to, the term “short

term memory” will be used.

The traditional computer metaphor of working memory is still alive (Luck & Vogel,

1998).  Long term memory is compared to data stored in Random Access Memory (RAM).

Portions of RAM can be loaded (or copied) into the memory registers of the processor to

constitute a Short-Term Memory.  The capacity of these registers is relatively small like the

capacity of Short Term Memory.  The capacity of the registers limits the power of the

computer just as the capacity of Short term memory limits human processing capabilities.

The registers also contain the code that will process the information or the data stored in

them.  In other words, these registers have the ability of processing information like Working

memory.  But this metaphor is only based on surface similarity.  Human memory is more

limited, is subject to forgetting, to interference, is addressable by its content and not by an

“address” (Kanerva, 1990), etc.  Even if this metaphor is not taken completely seriously,
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some of the basic ideas still form the dominant paradigm.  The separation of LTM and STM

into two systems, the idea that information can be loaded from LTM to fill WM, and that

LTM can be constituted by loading the WM content into LTM are the basic ideas of the

multiple store model.  This section will show how INFERNET can exhibit characteristics of

WM and LTM without separating them.  The first part of this section will first be devoted to

presenting some of the main findings about memory.

3.1 The capacity of short term memory

In a series of experiments, Miller (1956) found that people can recall at most seven

independent sets at a time.  These sets are called chunks.  They can involve an unlimited

amount of information.  The capacity of STM is generally measured by a span task.  The

experimenter presents a collection of items to the participant then removes the stimulus and

asks the participant to recall all items present in the original stimulus in order.  When the

participant succeeds, a longer collection of items is presented and so on until the participant

fails.  The number of items contained in the last successful trial of the participant is the span

of that participant.  Note that it is assumed that if a participant fails at 7 items she/he will fail

at 8, 9, 10.

The span task has been used for different stimuli: digits, words, non-words, visual

features etc.  One of the important findings is that this limit depends on the stimuli.  For

example: the span is higher for digits than words, it is higher for short words than long

words, it is higher for quickly pronounced words than for slowly pronounced words…

It has been argued that the true capacity of STM was actually lower than seven.

Broadbent (1975) argued that the capacity is about 3 or 4 chunks.  Fisher (1984) found a

maximum of 4 channels in visual search.  Yantis (1992) found that people can track 4 moving

visual items at a time.  Luck & Vogel (1998) reported that people can hold an average of four

visual features, chunks or combination of features.

The problem with span is that it is often considered as a clear cut threshold, and it seems

that researchers hope to find a “magical number” that limits the capacity of STM.  It would be

better to describe this phenomenon as a decreasing function describing the lower frequency of

success as the number of items increases.  But this is rarely how researchers present results.

STM span studies seem to favor the belief in a threshold function, whereas data seems to

favor a sigmoid function.

3.2 Forgetting

Short term memory content is evanescent, after something like 20 seconds the initial content

of STM has disappeared.  Peterson & Peterson (1959) used the Brown-Peterson technique to
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study forgetting in STM.  Participants received a trigram to be memorized, then they had to

count backward from a particular number by steps of 3 (e.g. 101, 98, 95, 92, …).  After a

certain time interval, not known by participants, they had to report the trigram.  Results show

an exponential decrease in the recall frequency.  After 18 seconds the proportion of correct

reports is near 0.  These authors interpreted this forgetting in terms of trace decay.  Other

researchers found that by manipulating variables affecting proactive inhibition, they could

explain forgetting in terms of interference.  Proactive inhibition is the reduced recall of newly

presented material due to what has been learned before.  Keppel & Underwood (1962)

showed that proactive inhibition was affected by the number of previously learned items.

Wickens, Born, & Allen (1963) showed that the similarity between previously learned items

and newly learned items affected proactive inhibition.  They argue for interaction between a

decay and interference.  Turvey, Brick and Osborn (1970) showed that the influence of

previously learned items on newly learned items was affected by the time delay between their

presentation.

3.3 Arguments for STM LTM distinction

3 . 3 . 1 Serial effect

There seems to be two storage systems: one for LTM and one for STM.  Some early studies

(Deese & Kaufman, 1957; Murdock, 1962) found that in free recall the first items and the last

items were better remembered.  In free recall, people memorize a series of 10 or 15 or even

40 items (more than the span).  The participants’ task is to recall as many items as possible,

regardless of order.  Murdock (1962) showed that for lists from 10 to 40 items people were

better at remembering the first items in the list and even better at recalling the last items of the

list.  The fact that the last items are recalled better is called the recency effect, while the fact

that the first items are recalled better is called the primacy effect.  Postman & Phillips (1965)

showed that if one increases the time between the presentation of items and the beginning of

the recall to approximately 15 seconds, the recency effect disappears while the primacy effect

remains.  The multiple store model explanation is that the first items are stored in LTM, while

the last items of the list are stored in STM.  Deferring the recall has an effect on STM, but no

effect on LTM.  The conclusion is that STM must be separated from LTM, since the recency

effect is a STM effect.  However, Baddeley & Hitch (1977) asked rugby players to recall all

the teams with whom they played since the beginning of the season.  They found a recency

effect in this purely LTM task.
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3 . 3 . 2 Coding systems

The phonological similarity between letters or between words produces replacement errors or

impaired immediate serial recall in STM tasks (Baddeley, 1966a).  Semantic similarity, on the

other hand, does not produce as many errors.  Visual similarity among items has also been

found to impair STM (Longoni & Scalisi, 1994; Walker, Hitch, & Duroe, 1993)  In LTM,

Baddeley (1966b) showed that semantic similarity does induce more errors, while

phonological similarity does not.  The multiple store model proponents conclude that STM

and LTM do not use similar coding systems and for this reason must be separated.

3 . 3 . 3 Double dissociation

Some neuropsychological data indicate a double dissociation between STM and LTM.

Baddeley & Warrington (1970) describe a patient with normal STM and defective LTM while

Shallice & Warrington (1970) describe a patient with normal LTM and impaired STM.

Again, the multiple store model proponents conclude that this supports the conclusion that

STM and LTM should be separated.

3.4 INFERNET as a model of STM

In this section, INFERNET abilities to model STM as the activated part of LTM will be

described and illustrated by empirical support from simulations.

3 . 4 . 1 INFERNET STM capacity

As indicated in chapter 2, a number of neurobiological parameters are involved in

representations that rely on clusters of nodes firing simultaneously.  The first is the frequency

of oscillation.  In INFERNET, once a node is activated, it tends (but not necessarily) to fire

rhythmically between 30 and 100 Hz.  The temporal gap between 2 spikes of a node is

therefore from 10 to 33 ms.  This corresponds to the observed 30-100 Hz (γ wave)

oscillations of certain types of neurons.  These γ waves have been observed to be associated

with attention (Wang & Rinzel, 1995) and with associative memory (Wilson & Shepherd,

1995).  The second key parameter is the precision of the synchrony.  According to Singer &

Gray (1995) this precision is between 4 to 6 ms.  For Abeles, Prut, Bergman, Vaadia, &

Aertsen (1993) , the precision is about 5 ms and depends on the frequency of oscillation.

This allows us to approximate the number of windows of synchrony that could be

differentiated, i.e.  25/5 = 5.  If we assume that a window of synchrony corresponds to an

item or a chunk in STM, then this puts STM span at approximately 5, with a small amount of

variance since precision is proportional to oscillation frequency.  This corresponds to current

estimates of human STM span.  It has been suggested (Cowan, 1998), that the traditionally
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accepted size of STM (i.e., 7±2 items) may be too high.  An item can be a word, an idea, an

object in a scene or a chunk, i.e., a grouping of items.  Similar explanations for the brain’s

ability to store approximately 7 short-term memory items can be found in Lisman & Idiart

(1995), Jensen & Lisman (1996), Shastri & Ajjanagadde (1993), Sougné (1996), Sougné &

French (1997), Jensen & Lisman (1998), Luck & Vogel (1998)

How can representations be maintained in STM? The problem with γ waves is that they

persist only a few hundred milliseconds.  This is not long enough to reflect the time taken by

people to draw inferences, nor does it correspond to standard estimates of STM retention time

(10 to 20 seconds).  For this reason, following Lisman & Idiart (1995), γ waves in

INFERNET occur in bursts which restart every 146 to 333 ms.  This corresponds to θ waves

[3 - 7 Hz] whose duration can exceed 10 seconds.  The resulting temporal firing pattern for a

single node is a set of firing at 40 Hz for the seven spikes that constitute a burst.  This is

followed by a resting period of, say, 75 ms.  Thereafter, the burst begins again.  The burst

interval is, therefore, about  250 ms (4 Hz).  There is neurobiological evidence for this

rhythm in STM.  θ waves have been observed to be associated with visual short term

memory task on a monkey (Nakamura, Mikami, & Kubota, 1992). This wave was

maintained as long as attention was required.

STM capacity is limited, and chunking increases the amount of information it can contain.

In INFERNET, chunking is achieved by two processes:

1. Increasing the number of nodes — and, as a result, increasing the number of objects

or symbols firing in synchrony.  This is achieved by means of spreading activation.

2. Replacing the content of two or more windows of synchrony by a single one that

sums them up.  This is achieved by the use of excitatory and inhibitory connections.

Examples of chunking will be provided in sections 5.3 and 6.3.

We will run simulations on INFERNET to explore STM capacity.  In this experiment, 84

nodes fires rhythmically with a delay ∆tγ  = 30ms.  They are distributed over the 30ms to

cover the entire interval.  This represents the context or task nodes.  In the binding-learning

phase, as input, each object node will only fire twice per theta cycle and will respect a

particular sequence (see Figure 3.1).  “Object 1” nodes will fires twice, then “Object 2” will

fire twice etc.  The phase assigned to each object is randomly chosen.  In the binding-learning

phase, object nodes will fire at the same time as particular context nodes, thereby binding

these object nodes to these context nodes.  The connections linking context and object nodes

will be modified.  In the question phase, context nodes will fire and the simulator memory

will be evaluated by looking at the firing of object nodes.
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Figure 3.1
An example of  input

for the binding-
learning phase for

12 objects.  The
particular phase is
randomly assigned

for each object.

Context

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

Object 9

Object 10

Object 11

Object 12

In this experiment, there were 7 nodes per object, and objects inhibits each other

(Inhibiting connection with a delay of ∆tγ ).  There is a probability for noise on the delay, and

therefore the nodes will not fire precisely at 30 ms intervals.  The more windows of

synchrony that are required, the more competition there will be between nodes, since there is

an increased probability that 2 nodes pertaining to different objects will fire in synchrony.  In

that case, we would expect that the proportion of recall will decrease as a function of the

number of items to memorize.  This is, in fact what happens.

Figure 3.2 displays the proportion of correct recall for different list lengths.  Twenty trials

for 4, 5, 6, 7, 8, 9, 10, and 12 items were tested with the INFERNET simulator.

Normalized correlation (as described in section 2.8) was computed for each object.  This is a

correlation between data observed and data that we would obtain for perfect recall.  To obtain

the proportion of recall for a particular set length, normalized correlations for each of the

items were multiplied together.  The reason is that we are looking for the cases where all

items are recalled in the correct order.  In span task, if one item is missing, the response is

considered incorrect.

In order to compare these results with human data, we plotted the data of different studies

for which the authors have collected the frequencies of correct recall for different list lengths.

Luck & Vogel’s (1998) study on visual short term memory analyzes visual span by

successively showing two stimulus arrays.  Subjects are asked to judge if the two stimuli are

equivalent or differ by a a single feature or a combination of features.  The set size is
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determined by the number of objects present in the array.  The data published by Baddeley,

Thomson & Buchanan (1975) on short words are somewhat biased.  When a participant

failed on the 8 trials of a list of items, the test was stopped, which means that proportion of

correct recall was underestimated for higher numbers of item.  Moreover, this study involved

only 8 subjects.  Baddeley & Warrington’s (1970) results should also be taken with caution,

since they were based on only 6 participants.  Unfortunately, we did not find an extensive

study which presented frequency of recall for different list lengths and verbal material.

Figure 3.2
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Data reported in Figure 3.2 show a decrease of correct recall as the number of item

increases.  Moreover, the decreasing function is sigmoidal in shape.  INFERNET seems to

be somewhat better than humans, but the important point is that STM capacity is limited and

that the decreasing functions are parallel.

3 . 4 . 2 Forgetting

Forgetting in INFERNET is caused by both trace decay and interference.  As described in

chapter 2, connections that were strengthened during a binding-learning phase, will decay

slowly over time.  This is compatible with a trace decay.  When there is a high number of

objects to be distinguished, competition for windows of synchrony increases and, as we

showed in the previous section, the proportion of correct recall decreases.  This is compatible

with what would be produced by interference.  The data presented in the next section are a

result of these two processes, i.e. decay and interference.

3 . 4 . 3 Serial effects

What happens when INFERNET has to memorize a number of items beyond its span?  The

following experiment examined which items were recalled.  Forty trials were performed by
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INFERNET faced with the task of memorizing 12 items.  The procedure was the same as the

preceding experiment.  For each item, the proportion of recall was computed as described in

section 2.8.  The results are shown in Figure 3.3.  We also report data that was inferred from

Murdock (1962).  In this study, there was no data for list length of 12 items.  Data were

obtained by comparing 10-item results with 15-item results.

As we see, the first item in INFERNET is better recalled than successive ones.  The five

last items are also better recalled.  INFERNET displays a primacy and a recency effect

without separating LTM from STM.  Why this happens?  In short, the primacy effect is

caused by interference, and the recency effect by trace decay.  In Figure 3.1, we plotted the

input that is provided to INFERNET in the binding-learning phase with 12 items.  Each

object node is externally excited twice, but these nodes will continue to oscillate

independently at the gamma frequency.  The only object nodes that are not in competition

with others are the nodes associated with the object presented first.  The others will always

appear when other object nodes are already oscillating.  This is why the object presented first

is recalled better than subsequent ones.  Binding-learning happens when independent

excitation is synchronous with external excitation.  For the objects presented first, at the end

of a gamma cycle, the time elapsed from this moment will be longer than for the items

presented last.  If the nodes associated with an object continue to oscillate, nothing will

happen, but if a node stops oscillating, the connection strength from the bound context nodes

will decrease.  The more time elapsed from the external excitation, the more the chance of

having a node that stops firing.  That is why the items presented first have a greater chance

that their connections from context nodes will decay.

Figure 3.3
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The data reported in Figure 3.3 shows that INFERNET performs better than humans, and

that the INFERNET trace decay takes more time.  Nevertheless, both primacy and recency

effects occur with a unique system for STM and LTM.  It should be possible to obtain a

better match with different settings of INFERNET parameters.
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3 . 4 . 4 Similarity

The following simulation will show how INFERNET reacts when the objects to memorize

are similar.  The similarity between objects was simulated by assigning to the different

objects a common node.  Five objects were created.  Each contained 7 nodes.  In the

dissimilar group, the 5 objects were represented by 7 different nodes; for the similar group,

the five objects had 6 of their own nodes and one common node (i.e. a degree of similarity of

1/7).  The frequency of correct recall was computed as before.  Data were collected on 40

trials for each condition.  The results are displayed in Figure 3.4, and are compared with

Baddeley (1966a), Experiment 1.

Figure 3.4
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The INFERNET results show an effect of similarity between items.  The slope of the

decreasing function falls between the effect of acoustic similarity and semantic similarity,

according to Baddeley (1966a) study.  The important point is the existence of a similarity

effect.  The number of nodes shared by objects could have been increased in order to obtain

an effect similar to that observed for “acoustic similarity”.

Since the current version of INFERNET does not separate phonemic from semantic

representations, no data are available to contrast with this difference obtained in Baddeley

(1966a).

3 . 4 . 5 Double dissociation between LTM and STM

In this simulation, the ability of INFERNET to display double dissociations between STM

and LTM was explored.  Three settings were tested with 20 trials per settings.  The STM was

tested as before, noting the proportion of correct recall for a list of 5 objects.  A LTM was

included in the system: each of the 5 objects were linked with a particular object.  So, the

experiment involved 10 objects.  This simulation can be viewed as if the network were
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maintaining a list of exemplar words like robin, siamese, griffin, trout, oak in STM and the

LTM task involved correctly associating each word with a particular category: robin-bird,

siamese-cat, griffin-dog, trout-fish, oak-tree.  Specifically, the LTM score is the total

category node firings divided by the total exemplar node firings.  If the LTM is good,

whenever an exemplar is activated, the corresponding category will be activated.

Figure 3.5
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For the first group (“full”) the noise on delay probability was set to 20% and the links

between our five exemplar-category pairs were maintained.  For the impaired LTM group, the

noise on delay probability was maintained at 20% but 5/6 of the links between exemplars and

category were destroyed.  For the impaired STM group the noise on delay probability was

raised to 50%, and the content of LTM was the same as in the “full” group.

INFERNET results are displayed in Figure 3.5.  These data clearly show a double

dissociation between STM and LTM.

Other variables could have been used to obtain this double dissociation.  Noise decreasing

connection strength should affect more LTM than STM, binding-learning rate should afflict

more STM than LTM, etc.  This experiment illustrates the fact that for obtaining double

dissociations only two variables suffice.

3.5 Discussion

A large number of data have been accumulated in this half of century on memory.  A number

of phenomena have been discovered and assessed.  INFERNET has not the pretension to

explain all of these phenomena.  Our goal was simply to review a number of classic

phenomena and to test INFERNET to see if it can account for them.  The overall picture that

INFERNET draws is quite close from reality.  This success is more especially valuable as

INFERNET (an unique store model) simulates data that are considered by many authors to be

the main arguments for the multi-store model.  Supporters of the multi-store model could
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always argue that even if STM is the activated part of LTM, STM is functionally distinct from

LTM in INFERNET.  But since they both share the same substrate, they are not functionally

independent in INFERNET.  This is important in explaining data involving the relationship

between LTM and STM.  For example: Hulme, Maughan & Brown (1991) showed that the

STM span is higher for words than for non-words (which have no semantic representation in

LTM).  Memory span is worse for foreign language words than for mother-tongue words

(Hulme, Maughan & Brown, 1991).  Experts have a better STM than novices (Chase &

Simon, 1973).  High frequency words are better remembered than low frequency words

(Watkins & Watkins, 1977).  To explain these data, Logie (1996) has proposed that

information in working memory also activates LTM traces.  These kind of dual STM-LTM

systems seem ad-hoc, uneconomical, and probably unnecessary.  Another advantage of a one

store model over multiple store models is related to the “Occam’s razor” principle.  This

principle was enunciated by the philosopher William of Occam in the fourteenth century.  The

less a theory postulates elements in order to explain a phenomenon, the better it is.  In other

words, the more parsimonious an hypothesis is, the more likely to be true.

The reader may have remarked that the term “working memory” has almost  never been

used.  The reason is simple: working memory involves a set of process control mechanisms

like attention and even consciousness.  INFERNET was not designed to simulate these kinds

of phenomena.  Even if certain colleagues have built simulators which also use oscillation and

synchrony to model attention (Baird, 1996; 1997), and even if synchrony has been

hypothesized to be the neural correlate of consciousness (Crick & Koch, 1990), we are still

very far from making a simulator which displays the process control of working memory.

The contribution of INFERNET over “box” models like those of Baddeley (1986) or

Atkinson & Shiffrin (1968) is the level of processing details.  These “box” models provide a

gross description of phenomena.  Consequenly, one would have great difficulty building a

computational model based on these descriptions without building in a large number of

special purpose mechanisms.  For example, in Baddeley’s model, the phonological loop is

responsible for maintaining verbal information.  What are the mechanisms of looping, why

does it start, why does it stops?  Why is the phonological store impaired by phonological

similarity?  Many magical processes have been attributed to the central executive ensuring the

model fits empirical data, but nothing is said about how this central executive actually works.

Some researchers even doubt its very existence (see Parkin, 1998).

INFERNET is a theoretical and computational model that gives detailed and falsifiable

predictions, and provides detailed mechanisms of cognitive phenomena grounded in

neurobiology.  Its limits in explaining some data also provide perspectives for future work.

What are the advantages and disadvantages of INFERNET over other connectionist

models of memory which attempt to model the relationship between STM and LTM?  Levy &

Bairaktaris (1995) distinguish three types of connectionist solutions: the dual component
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architecture, the dual weight architecture and the dual trace architecture.  In the dual

component architecture, there are two networks one for the STM one for LTM.  An example

is Barnden’s COMPOSIT model (Barnden, 1991, 1992, 1994; Barnden & Srinivas, 1991)

In this model, STM is composed of several registers  filled with activation patterns from

LTM.  The problem is finding a neurally plausible justification for the rapid transfer of

information from LTM to STM.  In the dual weight architecture, there are two types of

weights, fast weights are modified for encoding STM and slow weights for LTM.  Examples

of dual weight connectionist models are Hinton & Plaut (1987), Cleeremans & McClelland

(1991), Levy & Bairaktaris, (1995).  There is a neural justification for this dichotomy —

namely, some synapses change slowly, others quickly, some are long lasting changes, others

transient (see Markram, Wang & Tsodyks, 1998; Markram, Pikus, Gupta & Tsodyks,

1998).  For the dual trace architecture, LTM is stored in connection weights, while STM is

the activation of the network.  These models derive from the ideas of Hebb (1949).  This

solution has been applied to model different aspects of STM by Shastri & Ajjanaggadde

(1993) and Jensen & Lisman (1998)

None of these solutions alone are sufficient for modeling STM and LTM: the problems of

binding and multiple instantiation must be solved, the capacity of STM must be constrained,

etc.

INFERNET falls into the category of dual trace architectures, since STM is the activated

part of LTM, but it also has some characteristics of dual weight architecture.  Binding in STM

is performed by fast weight changes while LTM weight cannot be modified, they have fixed

values.

INFERNET does not separate objects, symbols, and phonemes and, as a result cannot

model effects related to different codings involving word-length effects, semantic vs.

phonemic similarity, and speech rate effects.  However, such distinctions could likely be

done as extensions of the present INFERNET architecture.  Some connectionist work has

already been done on this subject.  Hartley & Houghton (1996) built a connectionist model

able to simulate errors human make with unfamiliar phoneme sequences.  Grossberg,

Boardman & Cohen (1997) simulate speech rate effects.  However, these models in general,

simulate fewer STM characteristics than INFERNET.

Sougné & French (1997) provide a theorical explanation of Sternberg (1966) memory

scan effect within the framework of INFERNET model.  The memory matching capabilities

necessary to do this task have not yet been implemented in INFERNET.  Jensen & Lisman

(1998) provide an elegant explanation and simulation data on this problem with a model very

similar to INFERNET.  The difference lies in the fact that the different items are encoded in

different phases inside a theta cycle instead of gamma cycle in INFERNET.
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The final ability involving LTM that INFERNET does not have is the ability to construct

new memories and to integrate them in LTM.  There are two difficulties with this process.

The first is developing a learning algorithm capable of learning long chains of activation. This

point will be discussed in chapter 8.  The second problem is avoiding catastrophic

interference.  Recent studies French & Mareschal (1998), French, (1997a, 1997b, 1999) and

MacClelland, McNaughton, & O’Reilly (1995), Ans & Rousset (1997), provide insights on

that problem with a good neurobiological justification.





Overview of empirical studies

The preceding chapter showed that INFERNET's short term memory (STM) is constrained in

a similar manner as human STM.  The following three chapters will describe additional

INFERNET constraints, will explain how the INFERNET simulator behaves and will

describe human empirical studies that test INFERNET's predictions.

Chapter 4 presents constraints on the length of propagating chain.  Bindings in

INFERNET are constrained by the number of intermediate steps required for particular role

nodes to enter into synchrony with the filler nodes.  This constraint is shown to provide a

plausible explanation of negation effects in human reasoning.  Experiment 1 in chapter 4

presents human reactions to negated conditionals.  INFERNET predicts a lower rate of

inferences for cases involving double negations which require a longer chain of propagation.

Experiment 4 in chapter 6 provides further empirical evidence for the effect of the

number of intermediary steps.  Two situations were compared, one involving a symmetry

and the other involving an asymmetry.  Since dealing with asymmetry requires a longer

propagation chain in INFERNET, it was predicted that dealing with asymmetry would be

more difficult than dealing with symmetry.  Experiment 4 tests this hypothesis on humans.

Chapter 5 explores constraints on predicate representation.  In INFERNET the more

arguments a predicate has, the more windows of synchrony will be needed to represent it.

Experiment 2 tests this hypothesis on humans.  Experiment 3 explores how humans can

reduce the number of windows of synchrony when arguments are too numerous.

Chapter 6 presents the multiple instantiation constraint.  This problem arises in

connectionist networks as soon as a symbol has to be simultaneously used twice in different

ways.  Since INFERNET’s short term memory is the transient activation of parts of long

term memory, it cannot make multiple copies of a symbol, in the same way, for example, that

a symbolic system can.  The INFERNET solution to the multiple instantiation problem

involves superposition of different node oscillations.  This process is constrained by the

refractory period of the nodes.  Experiment 4 explores the feasibility of the INFERNET
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solution.  Experiment 5 provides evidence for a relation between human reaction time and

the number of instances of a same predicate.   Finally, in INFERNET, a symbol is

represented by a set of nodes firing in synchrony.  The distributed nature of each symbol

implies that closely related symbols have nodes in common.  If two related symbols are

needed simultaneously, and if they cannot belong to the same window of synchrony, the

nodes that they share must be instantiated twice.  Experiment 6 provides evidence for a

relation between human reaction time and the level of similarity between elements involved in

premises.

In these experiments when the premises involved in the compared situations contained

different words, we wanted to be sure that effects were not due to the use of particular

words.  One way to compare two situations involving different words is to consult a word

frequency table.  We preferred to perform a lexical decision task with all words present in

those experiments.

The experiment had a within-subject design.  The 20 participants were undergraduate

psychology majors (14 females 6 males) mean age: 21.8 SD: 2.09.  All the words involved in

the different experiments were collected: (bûcheron, coupe, chêne, apprenti, menuisier,

clouera, planches, tracteur, fermier, pourra, passer, chemin, si, le, du, sur, des, il, faut,

portier, payer, francs, 100, au, présenter, ou, 2, filles, patron, pour, rentrer, dans, bar,

avoir, plus, 14, ans, être, accompagné, adulte, entrer, volé, argent, donné, bonbon).  They

were added to a collection of non words obtained by replacing a letter in a real French word:

(contactir, débli, entilé, fertale, gralier, inutale, livade, manelle, mochir, orgone, pinle,

pochir, quantare, relatir, sapon, serter, stralique, tambard, telon, tesu, tirte, usoge,

vengir).  Participants were asked to decide as fast as possible if the presented string was a

word or not.  If they thought it was a word they had to press a key on the right side of the

keyboard if not they had to press a key on the left side of the keyboard.  The computer

recorded the time required for them to respond.

Whenever comparison involved dissimilar words, respecting word reaction times were

combined.  The resulting mean word reaction times (for every situations of an experiment)

were then compared with appropriate statistical measure.  This indicated if mean word

reaction times were significantly different (or not) in the situations compared.



4 Constraints on the length of the
reasoning chain

4.1 Introduction

In INFERNET the number of steps required for transmitting activation from one point to

another is constrained by two factors.  The first is the probability of errors in transmission

which increases as the number of steps increases.  In Figure 4.1, for the role 1 nodes to fire,

the transmission must go through intermediate nodes 1.  For the role 2 nodes to fire, the

transmission must go through intermediate nodes 1, 2 and 3.  At each intermediary step there

is a chance of error.  The second constraint concerns the lag between the starting point of the

filler’s oscillation and the starting point of the role’s oscillation.  The more steps that are

required, the greater the lag between roles and fillers.  As the lag increases, the number of

synchronizations between the firing of role and filler nodes decreases.

Figure 4.1
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Figure 4.1 illustrates this second constraint.  The synchrony between “Filler nodes” and

“Role 1 nodes” starts before the synchrony between “Filler nodes” and “Role 2 nodes” but
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both end at the same time.  Since in the process of learning bindings, each synchrony

provokes a modification of connection strength, the more synchronies that occur, the more

learning will be fast and reliable.  In this case filler nodes will be bound to role 1 nodes faster

and more reliably than to role 2.

This chapter will illustrate this constraint by having INFERNET solve conditional

reasoning tasks.  The behavior of INFERNET will produce hypotheses that will be verified

on humans.

4.2 Conditional reasoning

Many psychological studies in the area of deductive reasoning have focused on conditional

reasoning of the type “if p then q”.  This kind of statement is common in ordinary language.

For example, the reader has surely heard a mother promising her daughter: “If you drink your

soup, you will get a desert”.  For the logic point of view “If-then” forms refers to material

implication.  Of course, some logicians would deny that material implication “⊃ ” is really

what humans mean by “if …then”.  Nonetheless, here are the standard logical rules related to

material implication: modus ponens (MP): if p then q, p, therefore q, 
p ⊃ q, p

q , and modus

tollens (MT): if p then q, not q, therefore not p, 
p ⊃ q,~ q

~ p .  While most humans follow modus

ponens, it is different for modus tollens.  People also use two inappropriate rules: Denial of

the antecedent (DA): if p then q, not p, therefore not q is an error, we write this: 
p ⊃ q,~ p

~ q
×
,

and Affirmation of the consequent (AC): if p then q, q, therefore p is also an error, we write

this: 
p ⊃ q,q

p
×
.  Table 4.1 summarizes the application of MP, DA, AC, and MT.  Throughout

this chapter the “if p then q” form will be called the “major premise”, p the antecedent, q the

consequent.

Table 4.1
The result of

applying the four
inference rules

MP DA AC MT
given infer given infer given infer given infer

p⊃ q p q ~p ~q q p ~q ~p

Psychological studies on conditional reasoning generally have used 3 different paradigms:

Wason selection task, Inference paradigm, and truth table task.  The “Wason selection task”

was invented by Wason (1966).  Wason's problem consists of giving subjects a series of

cards that have, for example, on one side a number and on the other a letter.  Participants

receive a major premise, for example: if there is a vowel on the card, then there is an even

number on the other side.  A series of cards is presented, for example: A, B, 4 and 7 and the

participants are asked to only turn over the cards which will allow them to determine the

validity of the given major premise.  Turning over card A corresponds to applying modus

ponens, turning over card B corresponds to applying the deny of the antecedent, turning over
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card 4 corresponds to applying the affirmation of the consequent and turning over card 7

corresponds to applying modus tollens.   In the inference paradigm, people receive a

conditional statement and a minor premise and they have to state the conclusion or to choose a

conclusion from a set of different conclusions.  In a truth table task, participants receive a

major premise e.g.: “If there is an A then there is a 3” along with instances which combine

truth or falsity of antecedent and consequent, for example: A-3 (true antecedent - true

consequent), A-4 (true antecedent - false consequent), B-3 (false antecedent - true

consequent) and C-5 (false antecedent - false consequent). The participant’s task is to judge

whether each instance contradicts or conforms to the major premise.

Early studies with the Wason selection task (Wason, 1966; 1968; 1969) showed that very

few (around 10%) of undergraduate students were applying Modus Tollens.  Wason

explanation was in term of “verification bias”.  When given a major premise like “if p then

q”, people try to prove that the statement is true instead of false.  They choose a combination

that confirms the major premise (true antecedent, true consequent) and avoid the falsifying

card (false consequent) with a “defective truth table”.  In this “defective truth table” the false

antecedent cases (i.e., cases with a true consequent and false antecedent or a false consequent

and false antecedent)  are considered as undetermined.

Studies with the inference paradigm (Taplin, 1971; Evans 1977, Wildman & Fletcher,

1977, Marcus & Rips, 1979) reveal a greatly improved performance on application of modus

tollens (more than 60%).

People’s performance on the truth table task is closer to that observed with Wason

selection task (Johnson-Laird & Tagart, 1969).

4 . 2 . 1 Models of conditional reasoning

Current models of conditional reasoning tend to be symbolic.  They rely on three theoretical

currents: general purpose rule theory, Mental model theory and pragmatic schema theory.

According to authors like Inhelder & Piaget (1955), Beth & Piaget (1961), Beth, Grize,

Martin, Matalon, Naess & Piaget (1962), Braine (1978), Braine & O'Brien (1991) or Rips

(1983, 1990, 1994), humans possess a “natural” mental logic.  This natural formal logic

describes and determines the nature of human reasoning.  When faced with a problem, the

subject translates its content into an abstract representation to which inference schemas are

applied.  Once the inference is generated, it is channeled towards the real domain.  A

computational model PSYCOP has been presented by Rips (1994).  It provides simulator

results but not for simple conditional reasoning.

The theory of mental models of Johnson-Laird specifies that a logical reasoning can be

done without recourse to either general or specific rules (see Johnson-Laird 1983;
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Johnson-Laird & Byrne 1991).  According to this theory, logic is a set of procedures

allowing us to establish the validity of a given inference.  However, an inference system can

behave in an entirely logical manner without using inference rules or any other formal

machinery.  It would thus be useless to postulate the necessity of some mental logic.  When a

subject reasons, he/she only tests if the conclusion is true, assuming that the data are true.  A

mental model is a structure analogous to the world which allows the possibility of testing its

veracity.  When a subject reads the premises of a problem, he/she constructs a mental model

to represent the possible states of the world which are consistent with the available

information.  The subject constructs a provisional inference based on true propositions of the

model.  In order to ensure the validity of the inference, the subject looks for

counter-examples by the construction of alternative models for which the data remain true,

but not the conclusion.  If no counter-example is discovered, the inference is held to be true.

A computational symbolic model, PropAI, is briefly described in Johnson-Laird & Byrne

(1993).  No comparison between PropAI and human performance is provided.  PropAI is

available on the Web, which allowed us to test it on a simple conditional reasoning “If p then

q” and each puzzle (MP, DA, AC and MT) were tested 20 times.  This program always

returns the same response for a given input.  It leads to 100% of MP and MT acceptance and

0% of DA and AC acceptance.  Clearly, this model is more a computational model of a

particular logical derivation than a model of human reasoning.

Cheng and Holyoak's theory of pragmatic reasoning schemas (Cheng & Holyoak, 1985,

1989, Holyoak & Cheng, 1995) describes schemas which are structures that are more

abstract than knowledge-specific, but are, nonetheless, more knowledge-specific than the

general-purpose inference rules .  Reasoning is most likely neither based on rules

independent of context as in Piaget, Braine or Rips, nor on the memory of specific

experiences as Griggs & Cox (1982) suggested in their “memory cueing hypothesis”.

Subjects instead use abstract structures of knowledge induced by everyday life, which are

called pragmatic schemas of reasoning.  Cheng and Holyoak (1985, p. 395) define them  as

follows: “A pragmatic reasoning schema consists of a set of generalized,

context-sensitive rules which, unlike purely syntactic rules, are defined in terms of

classes of goals (such as taking desirable actions or making predictions about possible

future events) and relationships to these goals (such as cause and effect or precondition

and allowable action)”. As we see, the intention, the goal and their relationships make up

the organizing structure of the application of a schema.  Holyoak did not published a specific

computational model but much symbolic program in AI would fit this theory.
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4 . 2 . 2 Content effect on Conditional reasoning

Content effect

Wason and Shapiro (1971), using a “Wason selection task”, discovered that making the

content of the problem more concrete raised the proportion of sound answers.  The name of a

city was written on one side of the cards, and, on the other side, a means of transportation.

The participants were informed that each of these cards represented a day of travel for the

experimenter.  They were asked to verify the assertion that “Every time I go to Manchester, I

travel by train”.  The proposed cards were: Manchester, Leeds, Train and Car.  A

significantly higher proportion of participants gave the right answer with this concrete content

than with the abstract data of letters and numbers.  However, this “concrete content” effect

has not been replicated for this transportation rule.  Johnson-Laird, Legrenzi, & Legrenzi

(1972) found that subjects’ performance significantly improved with respect to the standard

Wason task if the major premise was: “If a letter is sealed, it has a 50 lire stamp on it”.  The

facilitating effect of concrete content has nonetheless been challenged by Manktelow & Evans

(1979).  These authors discovered concrete contents for which no facilitation was observed.

More recently, Pollard & Evans (1987) stated that a concrete and adequate scenario should be

used to produce facilitation.  It seems that an adequate context and content are required in

order for a facilitation to appear.  According to Evans (1989), content and context must be

rather coherent in order for the participant to apply actions that would be appropriate in real

life.

Deontic effect

The most studied content effect on reasoning concerns facilitation subsequent to the use of

statements which make reference to deontic factors.  Deontic reasoning is reasoning about

what people may, ought or must do in a particular context.  Griggs & Cox (1982) found a

facilitation in Wason selection task.  They gave participants a major premise: “If a person is

drinking beer, then the person must be over 19 years of age” and asked them to imagine

that they were a police officer and that their job was to ensure that the law was respected.

People then performed significantly better than in the abstract Wason task using letters and

numbers.  Griggs & Cox (1982) explained this facilitation by the fact that the situation

involved a particular piece of memory that was relevant.  The Wason selection task

performance would be facilitated when the presentation of the task allows people to recall a

real experience similar to the one they are being tested on.

Cheng & Holyoak (1985) postulated another explanation for the phenomenon.  They

described pragmatic reasoning schemas which are a set of rules that are invoked in particular

situations.  These schemas include a permission (an action requires a precondition to be
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satisfied), or an obligation (an action must be put forward if a precondition is present).  In

their 1985 study they described the permission schema as:

Rule P1: If the action is to be taken, then the precondition must be satisfied.
Rule P2: If the action is not to be taken, then the precondition need not be satisfied.
Rule P3: If the precondition is satisfied, then the action may be taken.
Rule P4: If the precondition is not satisfied, then the action must not be taken.

When a conditional statement matches rule 1 of the permission schema, the solution that

follows from the application of the schema follows the rules governing logical material

implication.  They replicated the Griggs & Cox (1982) experiment.  They also showed that

improved performance occurs when the permission rule involved abstract content like “If one

is to take action A, then one must first satisfy precondition P”.

Cosmides (1989) provided another explanation of the phenomenon which involves a

“social contract”.  This evolutionary theory postulated that people possesses a rule: “If you

take the benefit, then you pay the cost”.  This is a kind a social contract which would have

been shaped and included in human genes by evolution.  Evolution would have also shaped

humans to look for cheaters.  With the rule “If you take the benefit, then you pay the

cost”, looking for cheaters is looking for people who benefited without then paying a cost

(MP cases) and people who did not incur a cost but then took a benefit (MT cases).

Cosmides (1989) invoked the social contract rule in a Wason selection task by an

introductory story which leads people to look for violations of the rule.  She obtained a

facilitation with unfamiliar content like “If a man eats cassava root, then he must have a

tattoo on his face”.  She also did an experiment with a “switched” rule of the form “If I pay

a cost to you, then you must benefit me” which according to the social contract theory

should trigger looking for cheaters who did not pay a cost (DA) and cheaters who benefitted

without paying a cost (AC).  With an unfamiliar content: “If a man has a tattoo on his face,

then he eats cassava root”, Cosmides found more DA and AC then MP and MT.  Cosmides

(1989) also compared permission rules with or without the social contract context, and found

better correct performance when the social contract was included in the context.  When these

latter rules were switched, she found more DA and AC for rules accompanied by a social

contract context.

Cheng & Holyoak (1989) criticized Cosmides (1989) on the grounds of the differences of

the phrasing of the introductory context which were confounded for cases without social

contract context.  They also provided results of an experiment which compared an identical

rule with an introductory context that did or did not involve a cost.  They found no difference

and concluded that the facilitation observed by Cosmides (1989) was a consequence of the

invocation of the permission schema.  Concerning the reverse effect of a switched rule: e.g.

“If a man has a tattoo on his face, then he eats cassava root” it can be stated that it could

be interpreted to be like rule 3 of the permission schema: “If the precondition is satisfied,

then the action may be taken.” and lead to an increase of DA and AC.
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Platt & Griggs (1993) showed that if cost-benefit context does increase facilitation, the

use of the word “must” in the major premise also increases facilitation.

Gigerenzer & Hug (1992) showed that when there is a bilateral cheating option, the

switching effect was more striking than when the cheating option is unilateral.  Unilateral

cheating can be illustrated by this major premise: “If the envelope is sealed, then it must

have a 1 mark stamp.”  The only type of cheaters are those who used a sealed envelope with

a stamp whose value was less than 1 mark.  Bilateral cheating is present in this major

premise: “If an employee works on the week-end, then that person gets a day-off during

the week”.  The difference with the first type of cheating is the number of possible types of

cheater.  In bilateral cheating there are two.  The first type of cheaters are those employers

who do not give a day off when an employee worked on week-end,  and the second type of

cheaters are those employees who get a day-off without working on week-end.  They

concluded that only social contract theory explain “cheater” effects.  But Liberman & Klar

(1996) showed that cheating and not cheating contexts were equivalent when the

understanding of the task was controlled for.

Jackson & Griggs (1990) began a new debate in the field.  They found that using implicit

negations in the DA and MT minor premises reduced the facilitation effect in the permission

context.  Consider a major premise like: “If one is to take action A, then one must first

satisfy precondition P” (this major premise has the form of the rule-1 of the Cheng &

Holyoak’s  permission schema).  Explicit negation for the DA question is presenting the

minor premise: “Has not taken action A” while using implicit negation is presenting the

minor premise: “Has taken action B” (implicitely the action A is not taken).  Explicit

negation for the MT question is presenting the minor premise: “Has not fulfilled

precondition P” while using implicit negation is presenting the minor premise: “Has

fulfilled precondition Q” (implicitely the precondition P is not fulfilled).  Jackson & Griggs

(1990) observed a better performance with explicit negations than with implicit negations.

However, when permission was removed (standard Wason selection task), the use of explicit

negation did not produced a better performance.  Finally, when participants were asked to

check for violation, facilitation occurred with explicit negation in the standard Wason

selection Task.  This last effect has not been replicated in the study of Kroger, Cheng &

Holyoak (1993).  Girotto, Mazzocco & Cherubini (1992) replicated the implicit negation

effect but also found that when the implicit negation is deontically relevant, facilitation

occurs.  Griggs & Cox (1993) found similar results and concluded that failing to apply MT

with implicit negation was probably due to ambiguity in the MT minor premise which make

the MT application irrelevant (see also Noveck & O’Brien, 1996).

Manktelow & Over (1991) introduced the study of point of view in deontic reasoning.

They presented a context in which a mother tells her son: “If you tidy your room, then you

may go out to play”.  In terms of Cheng & Holyoak’s permission schema, this major
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premise has the form of rule 3 and should increase the proportion of DA and AC and decrease

MP and MT.  Manktelow & Over (1991) observed this result when participants were asked to

verify if the son had broken the rule (mother’s point of view), but observed the contrary

(increase of MP, MT and decrease of DA, AC) when participants were asked to check if the

mother had broken the rule (son’s point of view).  To explain these data, a theory should

explain how utilities of outcomes of different actions taken by oneself or others can be

evaluated and used to perform inferences.

To assess the effect of expected utility on deontic reasoning, Kirby (1994) used a Wason

selection task with a drinking age major premise: “If a person is drinking beer, then the

person must be over 19 years of age.”  Kirby (1994) used different MT minor premises

with different ages: “the person is 19 years old”, “the person is 12 years old”, and “the

person is 4 years old.”  These different versions lead to different frequencies of MT

application reflecting the different utilities of outcomes.  It is more probable that a 19 year old

person would break the rule than a 4 year old child.  This experiment provides empirical

evidence that utilities need to be incorporated in a theory of reasoning. The effect of utilities

has been replicated by Manktelow, Sutherland & Over (1995), Green, Over & Pyne (1997).

Finally, Oaksford & Chater (1994), Chater & Oaksford (1999) have developed a probabilistic

approach based on Bayesian statistics.  They suggest that people select cards in order to

maximize information gain.  People first select the data that has the greatest informativeness.

They do not tend to care about rare events.  Since there is a cost of examining data, the less

possible examination is performed.  Combining cost and rarity, people’s inferences will lead

to an ordering of information gain associated with turning over each card: MP>AC>MT>DA.

So we should observe more MP application than AC, more AC than MT and more MT than

DA.  In the Kirby (1994) experiment the MT minor premise “the person is 19 years old”, is

more probable (less rare) than the MT minor premise “the person is 4 years old”.

Holyoak & Cheng (1995) extended the pragmatic schema theory to explain these point of

view effects.  They first presented the schema of obligation:

Rule O1: If the precondition is satisfied, then the action must be taken.
Rule O2: If the precondition is not satisfied, then the action need not to be taken.
Rule O3: If the action is to be taken, then the precondition may have been satisfied.
Rule O4: If the action is not to be taken, then the precondition must not have been satisfied.

The theory predicts that changing point of view encourages the mapping of a particular

rule in the permission schema to another rule in the obligation schema.  This leads to the

reverse of facilitation effect.  The permission schema involves rights and the obligation

schema involves duties.  They are complementary.  Changing point of view leads to a switch

from rights to duties and vice-versa.

For Oaksford & Chater (1995b) the pragmatic reasoning schema explanation is less

parsimonious than their probabilistic model.
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The ability to correctly solve deontic problems seems to be a universal human ability.

Dellarosa-Cummins (1996), showed evidence of deontic reasoning in 3 years old children.

Stanovich & West (1998) showed that, unlike nondeontic tasks, deontic tasks were not

related to cognitive ability.

The above empirical data were collected using the Wason selection task paradigm.  Studies of

deontic reasoning with other paradigm are rare.  Newstead, Ellis, Evans & Dennis (1997)

however, used truth table task.  This paradigm, like the Wason selection task, does not

involve open answers.

4 . 2 . 3 Effect of negated constituents

What happens when negations are introduced into the major premise?  Negation can affect the

antecedent or the consequent.  It produces four forms of major premises.  Table 4.2 shows

these four forms and the inferences resulting from the application of the four rules (MT, DA,

AC, MT).

Using the inference paradigm some studies showed an effect of the negation (Evans,

1977, Wildman & Fletcher, 1977, Pollard & Evans, 1980).  The observed frequencies are

showed in Figure 4.2.  Pollard & Evans (1980) explain these data with what they call a

“negative conclusion bias” which is a tendency to prefer accepting a conclusion in the

negative form.  This is effectively the case for DA and MT.  This is not the case for MP, but

one could invoke a ceiling effect.  Finally the effect is not clear for AC.  As stated by Evans,

Newstead & Byrne (1993), this bias could be explained by people’s caution.  Concluding,

for example, in the absence of other information that “the letter is not an X” would have a

higher probability (25/26) than concluding that “the letter is X” (1/26).  Oaksford & Chater

(1994) provide a similar explanation.

Table 4.2
Combination

between form of
major premises and

the result of
applying the four

inference rules

MP DA AC MT
given infer given infer given infer given infer

p⊃ q p q ~p ~q q p ~q ~p

p⊃ ~q p ~q ~p q ~q p q ~p

~p⊃ q ~p q p ~q q ~p ~q p

~p⊃ ~q ~p ~q p q ~q ~p q p

There is also an interpretation of the negation effect in terms of a “Matching bias”: a

tendency to verify cases that are stated in the major premise.  If the major premise is “If p

then not q” people would prefer turning p and not q cards because they match the major

premise content.   However, this bias concerns only procedures like the “Wason Selection

Task” or the “Truth Table Task” in which participants have to test or verify a major premise

instead of applying it.  Moreover, the matching bias is closely related to implicit negation
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(Evans, 1998) and seems to disappear with the use of explicit negations (Evans, Clibbens &

Rood, 1996).  While negation in conditionals is known to create difficulties (Oaksford &

Stenning, 1992), little is said about double negation (for an exception, see Sperber Cara, &

Girotto, 1995, Evans, Clibbens & Rood, 1995).   The present study focuses on explicit

negation with a production task.

Figure 4.2
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In this study, the INFERNET simulator’s performance will be compared with human

data.  INFERNET provides an interesting hypothesis, related to the difficulty of removing

double negations.  A replication of previous experimental work was carried out in order to

collect reaction times which are not available in previous related studies, like Evans, Clibbens

& Rood (1995).

4 . 2 . 4 Connectionist models of conditional reasoning

Bechtel & Abrahamsen (1991) presented a connectionist model capable of treating material

implication, (see also Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995).  This is

a back propagation network able to test the logical validity of a given conclusion.  It is a

model of logical proof but not a model of human reasoning.  Moreover, this network is not

capable of solving the binding problem and consequently has limited capabilities.

Connectionist systems that solve the binding problem (see chapter 1) are theoretically capable

of conditional inference.  However, none of them reports comparison with human data.

4.3 Effect of the length of reasoning chain: the case of abstract
content with negations

In this section conditional reasoning in INFERNET will be compared to human performance

on abstract major premises with and without negations.
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4 . 3 . 1 Conditional reasoning with negated constituents in INFERNET

The task that will be simulated on INFERNET corresponds to the one already described in

Table 4.2.

INFERNET LTM

INFERNET has a Long Term Knowledge Base that is used for encoding premises and

answering queries.  Figure 4.3 shows the knowledge necessary to make conditional

inferences with negations.  Arrows represent connections; they are tagged with numbers that

indicate the time required to propagate activation.  Specifically, in this example, a delay of

30ms corresponds to the lag between two spikes of a node oscillating at 33Hz.  This delay

ensures that these symbol-node spikes will synchronize after 30ms.  The knowledge

encoded, as shown in Figure 4.3, can correctly answer the query related to material

implication.

Figure 4.3
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The first ability that INFERNET must have is that it must be able to detect negations in

the major premise.  AND-gate 2 detects when the antecedent is negated in the major premise

and AND-gate 3 detects a negated consequent.  During the premise-encoding phase, if an

antecedent is negated, for example: ~A⊃ 3, the connection between the AND-gate 2 and “A”

will be strengthened as well as the connections between “A” and “Antecedent”.  After this

phase, the firing of “A” nodes will be sufficient to induce the synchronous firing of the nodes

of AND-gate 2.  The second ability of INFERNET is to detect whether in the question (minor

premise) the antecedent or the consequent (as stated in the major premise) is negated and that

is done by AND-gate 1 and AND-gate 4.

By following the diagram carefully, one can see that AND-gate 1 detects the denial of the

antecedent, and AND-gate 4 detects the denial of the consequent.  If the antecedent or the

consequent has a negative form in the major premise (e.g. ~A⊃ ~3), and if the minor premise

is in the affirmative form (e.g. “A”), AND-gate 1 will be activated by AND-gate 2 by the

means of an XOR gate.  The same principle activates AND-gate 4.  The role of AND-gate 5 is

to detect double negations.  This gate will be active whenever AND-gate 1 and 2 or AND-gate

3 and 4 are active.  This gate prevents nodes representing “negation” from firing, therefore

solving double negation.  In order to do correct inferences, “Antecedent” and “Consequent”

must be linked.  The detection of the “Antecedent” in the question must enable firing of

“consequent” nodes, unless AND-gate 1 is active (thereby avoiding Denying the Antecedent).

The detection of the “Consequent” in the question must enable firing of “Antecedent” nodes if

AND-gate 4 is not active (it avoids Affirming the Consequent).  Finally, if AND-gate 1 is

active, AND-gate 4 will be activated, and vice-versa.

In section 2.6, it was argued that circuits of successive temporal gates were a possible

explanation of syn-fire chains (Abeles et al., 1993).  Consequently, the diagram of Figure

4.3 has some neurobiological plausibility.

Hypotheses

Classical explanations of negation effects in conditional reasoning rely on the notion of

“negative conclusion bias”: a tendency to prefer inferences in the negative form with the

exception of MP (Pollard & Evans, 1980).

The first hypothesis that follows from INFERNET is that it should be easier to apply

Modus Ponens than any other rule.  This effect is attributed to the stronger links from

antecedent nodes to consequent nodes.  The second hypothesis states that any time AND-gate

5 (see Figure 4.3) is needed, a decrease in performance should occur.  This effect is due to an

increase in the number of steps required to propagate the activation, and to this gate’s role of

blocking the oscillation of “negation” nodes. This AND-gate 5 is required to treat double
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negations.  Therefore this hypothesis predicts a decrease in the number of incorrect DA

answers for major premises “p⊃ ~q” and “~p⊃ ~q” and a decrease in the number of correct MT

answers for major premises “~p⊃ q” and “~p⊃ ~q”.  In order to contrast classical and

INFERNET hypotheses frequencies of inference and reaction times will be used.

Material

Four major premises were constructed. They differ by the use of negation in their antecedent

or consequent parts.  The first major premise involves affirmative antecedent and consequent

(p⊃ q).  The second major premise involves affirmative antecedent and negative consequent

(p⊃ ~q).  The third major premise involves negative antecedent and affirmative consequent

(~p⊃ q).  The last major premise involves negative antecedent and consequent (~p⊃ ~q).  Four

minor premises or questions were constructed: p, ~p, q and ~q.

Procedure and parameters

Each object in the experiment is composed of 12 nodes connected to each other with a delay

of ∆tγ .  In the learning phase, the major premise is presented to INFERNET by making

corresponding nodes fire in a particular order (Figure 4.4).  This input is repeated 10 times

which correspond to the number of gamma cycles in a burst.  An input like “If ~p then ~q” is

presented to the system with a particular a priori fixed structure (Figure 4.4) (how this

structure is achieved is beyond the scope of this work.)  The different parts of this input are

split in different windows of synchrony.  The first is attributed to “If” nodes, the second, to

“Negation” and “p” nodes, the third, to “then” nodes, and the last to “q” and “negation”

nodes.  When “negation” nodes fire in two windows of synchrony, it is said to be “doubly-

instantiated” (see chapter 6 for more details).

The question is then presented to the system (Figure 4.5).  The response of the system will

be used to evaluate reaction time.  This process is repeated 10 times (theta wave).  For every

ms interval, firing nodes are recorded.  The question phase follows.  The four questions are

presented successively to the network (a “within-subjects” design).  The “within-subjects”

design is simulated by saving random states, every time the system receives a new premise it

reloads this saved random state.  It changes random state when it simulates another subject

(or trial).  This ensures that the difference between simulated subject questions is not an effect

of a modification in the initial state of the network.  This input is presented once every theta

cycle.  The reaction of the network is recorded and the resulting data files will be used to

calculate the proportion of each INFERNET responses.
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Figure 4.4
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Figure 4.5
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INFERNET simulation results

INFERNET uses a two-step process for drawing inferences.  The first is to encode premises

by temporarily  increasing the weight of connections between objects and their respective

roles.  For example, giving the major premise “If ~p then ~q”, this first step will increase

connection weights between the object “p” and the role “Antecedent”, between the object “p”

and the nodes associated with gate 2, between the object “q” and the role “Consequent” and

between the object “q” and the nodes associated with gate 3.  Imagine that when a gate is

opened some nodes fire.  Figure 4.6 shows an example of these synchronies as they happen

as a result of the connections shown in Figure 4.3 and of an input: “If ~p then ~q”.  Figure

4.6 shows the ideal distribution of node firing times for each object that follows from the

major premise input “If ~p then ~q”.  Each object is represented by a set of nodes and if a

majority of these nodes fire within a short period, the object is said to be activated.  The firing

of “If” nodes is responsible for the firing of “Antecedent” nodes 10 ms later (see the

connections in Figure 4.3).  The firing of “Then” nodes is responsible for the firing of
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“Consequent” nodes 10 ms later.  Shortly after, “Antecedent” nodes synchronise with “p”

and with “Negation” nodes, while “Consequent” nodes fire in synchrony with “q” and

“Negation” nodes.  From the firing synchrony of “Antecedent” and “Negation” nodes, AND-

gate-2 will open and its associated nodes will fire in synchrony with “p” nodes.  From the

synchrony  of “Consequent” and “Negation” nodes, AND-gate-3 will open and its associated

nodes will fire in synchrony with “q” nodes.  These synchronies enable modifications of

connections between “p” and “Antecedent” nodes and between “p” and AND-gate-2 nodes.

After a certain amount of repetition, the firing of “p” nodes will enable the firing of

“Antecedent” and AND-gate-2 nodes, in the same manner, the firing of “Antecedent” or

AND-gate-2 nodes will enable the firing of “p” nodes.  The same thing will happen to

connections between “q” and “Consequent” nodes and between “q” and AND-gate-3 nodes.

Figure 4.6
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The second step is the network’s response to a query.  In the above example (“If ~p then

~q”), giving as minor premise the object “q”, we expect the system to apply the “modus

tollens” rule and answer “p”.

Figure 4.7 shows the network’s response to the query “There is a q, what do you

conclude?” which is represented by a binding of “q” to “Question”.  When “q” nodes fire,

they enable the firing of “Consequent” and AND-gate 3 nodes.  This follows from the

strengths modifications from the encoding phase.  Nodes belonging to AND-gate 3 and

“Consequent” activate AND-gate 4 nodes in the absence of inhibition from “negation”.  The

conjunction of AND-gate 3 and AND-gate 4 nodes firing opens AND-gates 5, whose firing

prevents “negation” nodes to fire near “Consequent” nodes firing time.  Meanwhile,

“Consequent” nodes have activated “Antecedent” nodes.  Because of the rule encoding phase,

“Antecedent” nodes activates “p” nodes which, in turn, activates AND-gate 2 nodes.  This

last gate nodes in conjunction with AND-gate 1 nodes that have been activated by AND-gate
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4 nodes, enable AND-gate 5 nodes firing in a second window of synchrony.  The nodes

following AND-gate 5 inhibit the firing of “Negation” nodes around “Antecedent” nodes

firing time.  This mechanism enables INFERNET to respond “p” to the query.

This graph is a theoretical and ideal representation.  INFERNET’s performance is more

noisy.  Negation may, for example, fire before AND-gate 5 inhibits it.

Figure 4.7
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INFERNET’s efficiency was measured as described in section 2.8.  The frequency of

inferences (MP, DA, AC, and MT) are reported in Table 4.3.  INFERNET was run 40 times

on each of the 16 problems.  As expected, MP is more often applied than any other rule.

There is also an effect of double negation which is responsible for the low frequencies of DA

when the consequent is negated and of MT when the antecedent is negated.

Table 4.3
INFERNET

frequencies of
inference

MP DA AC MT
p⊃ q 39 28 25 34
p⊃ ~q 37 11 27 31
~p⊃ q 39 30 27 13

~p⊃ ~q 34 15 26 20

The data were arranged to show the contrast between “negative conclusion bias”

hypothesis and INFERNET double negation hypothesis.  Figure 4.8 shows the hierarchical

organization of the data.  The first level splits data in two groups: Is the conclusion negative

or positive?  The second splits these two groups into two subgroups: is the inference

expected to be negative or positive?  MP-AC is grouped  on one side and DA-MT on the other

side.  The combination of “conclusion sign positive” and “expected sign negative” involves
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all the cases that require double negation.  The third factor splits the data in two levels: infer a

consequent “forward” (MP-DA) and infer an antecedent “backward” (AC-MT).  The

combination of “expected sign positive form” and “infer forward” involves all the MP cases.

A final factor splits the data into those cases where the minor premise (question) is in negative

or positive form.

Figure 4.8
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The log-linear analysis results are displayed in Table 4.4.  The G2 are underestimated

because data were analysed with a between design.  The Rasch model could not be applied

because it would require a 216 cases contingency table and no statistical software has been

found that can compute such a huge table.  (Even if widely used, an ANOVA on categorical

data is not appropriate.)  Nonetheless, an ANOVA has been performed and Table 4.4

displays results on 4 within factors with 2 levels each.  The sphericity assumption was

violated, so a box correction (ε̂ =.67235) on the number of degrees of freedom has been

performed.

The “negative conclusion bias” effect (a tendency to prefer accepting a conclusion in

the negative form) is measured by the effect conclusion sign.  This effect is significant.

There are 199 positive conclusions and 257 negative conclusions.  The INFERNET

hypothesis is tested by the interaction between “conclusion sign” and “expected sign” which

is significant.  Among positive conclusions, there are 130 conclusions where the expected

conclusion is positive and only 59 conclusions where they are expected negative, while

among negative conclusions the expected positive conclusions (124) are approximately as

numerous as the expected negative conclusions (133).  The other predicted effect of

INFERNET is the interaction “Expected sign” * “Infer forward vs. backward” which is also
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significant.  Inside expected positive conclusions cases, there is more MP (149) than AC

(105) while inside expected negative conclusion cases, DA (94) and MT (98) are

approximately equal.  One way to decide between the two hypotheses is to test their model

respective fitting.  The best fitting model is: Conclusion sign * Expected sign * Response +

Expected sign * Infer Forward Backward * Response G2(20)=10.90787 p=.9485464 which

is what was expected.  In summary, there is more MP inferences than any others, and when

an inference involves a double negation, it is hardly stated.

Table 4.4
Log-linear analysis

and ANOVA on
INFERNET

frequencies of
inference

Effect DF G2 p F DF p

Independence 15 145.5333 1.85 E-23
Premise sign 8 1.15999 .2814676  1.45643 1,26 .2383648

Infer Forward Backward 1 7.20272 .0072793 10.766871,26 .0029430
Expected sign 1 39.98231 2.56 E-10 41.29412 1,26 .0000008

Conclusion sign 1 26.35683 .0000003 31.567851,26 .0000066
Cs*Es 1 29.64906 .0000001 36.891891,26 .0000020
Cs*I* 1 1.842829 .1746197   .66102 1,26 .4235830
Cs*Ps 1 .229631 .6317976   .26773 1,26 .6092331
Es*I 1 36.69561 1.38 E-9 43.21344 1,26 .0000006

Es*Ps 1 .089985 .7641962   .54545 1,26 .4667978
I*Ps 1 .436194 .5089652   .31593 1,26 .5788779

Cs*Es*I 1 2.245933 .1339661   .60938 1,26 .4420711
Cs*Es*Ps 1 2.692276 .1008357  2.92771 1,26 .0989780
Cs*I*Ps 1 .9941513 .3187299   .37500 1,26 .5456104
Es*I*Ps 1 .0130477 .9090582   .05424 1,26 .8176668

Cs*Es*I*Ps 1 .0808797 .7761106   .39394 1,26 .5357097

Table 4.5 reports mean and SD reaction times for the four premises and the four

inferences.

Table 4.5
 means and

Standard deviations
INFERNET data (in

ms)

MP DA AC MT
p⊃ q mean 2402 5808 3794 3472

SD 383 2773 1130 816
p⊃ ~q mean 2677 4970 3764 3809

SD 217 2867 924 1391
~p⊃ q mean 2351 4834 5069 5384

SD 416 2773 1411 858
~p⊃ ~q mean 2921 4309 5307 5484

SD 443 2316 1458 1586

Data were analyzed by an ANOVA, 4-way within-subjects with 2 levels.  Normally with

2 levels the sphericity assumption is not required, but the organization of the data is

somewhat artificially nested.  That is the reason why we took sphericity into account.  Since

the sphericity assumption is violated and no transformation met it, the Box correction was

used (Box correction ε̂ =.4062180).  ANOVA results are displayed in Table 4.6.

The “negative conclusion bias” effect (i.e., a tendency to prefer accepting a conclusion

in the negative form), (conclusion sign) is not significant.  The “expected sign” (expected

positive: MP+AC, expected negative: DA+MT) and “infer forward vs. backward” (forward:

MP+DA, backward: AC+MT) are both significant.  The mean reaction time for expected
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positive cases is 3548ms, while for expected negative cases it is 4759 ms.  Forward

inferences are faster (mean: 3796 ms) than backward inferences (mean: 4510 ms).

Table 4.6
ANOVA on

INFERNET Reaction
times

Effect DF F p
Conclusion sign 1,16 2.8021 .1135742
Expected sign 1,16 172.8939 5.41 E-10

Infer Forward Backward 1,16  47.3611 .0000037
Premise sign 1,16   2.0023 .1762287

Cs*Es 1,16  32.6280 .0000321
Cs*I 1,16   7.6755 .0136471

Cs*Ps 1,16 .3011 .5907693
Es*I 1,16 81.7152 .0000001

Es*Ps 1,16 .5128 .4842507
I*Ps 1,16 2.8859 .1087156

Cs*Es*I 1,16  39.7897 .0000104
Cs*Es*Ps 1,16    .1851 .6727654
Cs*I*Ps 1,16    .2496 .6241571
Es*I*Ps 1,16   5.3560 .0342673

Es*Cs*I*Ps 1,16    .3924 .5398757

The INFERNET hypothesis is tested by the interaction between “conclusion sign” and

“expected sign” which is significant.  Among positive conclusions cases, the mean reaction

time for expected positive cases is 3078 ms and for expected negative cases it is 5037 ms.

While among negative conclusions cases, the mean reaction time for expected positive cases

is 4018 ms and for expected negative cases it is 4481 ms, this difference is less important.

Post hoc Tukey contrasting double negation cases with others are all significant.

The other predicted effect of INFERNET is the interaction “Expected sign” * “Infer

forward vs. backward” which is also significant.  The MP cases mean reaction time is lower

(2213 ms) than any other (DA: 4980, AC: 4483, MT: 4537).  Post hoc Tukey contrasting MP

with others are all significant.

4 . 3 . 2 Experiment 1: Conditional reasoning with negated constituents in
humans

The following experiment was conducted to provide a comparison between INFERNET

and humans.

Participants and Design

The experiment has a within-subjects design.  Forty participants received four major premises

in a random order and had to answer four questions for each major premise in a random

order.  The 40 participants were undergraduate psychology majors, 31 females 9 males,

mean age was 21.32 and SD was 2.1.
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Material

Four major premises were constructed, alternating positive and negative antecedent and

consequent.  Positive antecedent, positive consequent: “If the number is 3 then the letter is

X”, Positive antecedent, negative consequent: “If the number is 3 then the letter is not X”,

Negative antecedent, positive consequent: “If the number is not 3 then the letter is X”, and

Negative antecedent, negative consequent: “If the number is not 3 then the letter is not X”.

Each major premise presentation was followed by four questions: “The number is 3, what do

you conclude?”, “The number is not 3, what do you conclude?”, “The letter is X, what do

you conclude?”, “The letter is not X, what do you conclude?”.

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  One of the

randomly chosen major premises appeared on the screen.  Participants were asked to read it

and to indicate when they had understood it.  The major premise stayed on the screen during

the entire experiment.  Questions appeared on the screen, one at the time and in random

order.  Participants had to answer each question.  The computer recorded the time required

for them to respond.  The experimenter recorded the response.  When the participant

answered the four questions, the next major premise appeared on the screen with the same

procedure until the four major premises had been presented.  Before presenting the

experimental material, participants received training exercises with the same procedure, but

with an arithmetic content.  The refreshing frequency of the computer monitor was 75 Hz so

the timing precision is about 13 ms.  In the program made for the experiment, we took care to

block all processor interrupts to be sure that the computer waits only for signal of the time

measure (a click on the mouse).

Results

Frequencies of stating each inference are shown in Table 4.7.  According to the “Negative

Conclusion Bias” hypothesis, there should be more DA type inferences for major premises

3⊃ X and ~3⊃ X (applying DA for these major premises lead to ~X conclusion), more AC

type inferences for major premises ~3⊃ X and ~3⊃ ~X (applying AC for these major premises

lead to ~3 conclusion), more MT type inference for major premises 3⊃ X and 3⊃ ~X

(applying MT for these major premises lead to ~3 conclusion), and finally more MP.

According to the INFERNET prediction, there should be more MP type inferences than any

other, fewer DA type inferences for major premises 3⊃ ~X and ~3⊃ ~X (double negation

cases), and fewer MT type inferences for major premises ~3⊃ X and ~3⊃ ~X (double

negation cases).
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Table 4.7
Humans frequencies

of inference

MP DA AC MT
3⊃ X 40 31 28 31
3⊃ ~X 37 14 23 32
~3⊃ X 38 29 31 17

~3⊃ ~X 40 18 34 16

The INFERNET model seems to be a better explanation than “negative conclusion bias”.

Data were analyzed by a log-linear analysis.  The G2 are underestimated because data were

analysed with a between-subjects design.  The Rasch model could not be applied because in

that case it would require a 216 cases contingency table and no statistical software has been

found that can compute such a huge table.  The Table 4.8 also displays ANOVA results for 4

within-subjects factors with 2 levels each.  The sphericity assumption was violated so a Box

correction (̂ε =0.55088) on the number of degrees of freedom was performed.

In addition to the effect of the conclusion sign being significant (194 positive and 265

negative conclusions), other effects are also.  The effect of expected sign is significant, which

means that DA + MT (188 inferences) are less often applied than MP + AC (271 inferences).

Forward inferences (MP+DA) are more often done (247 inferences) than backward

inferences (AC+MT) (212 inferences).  The interaction between the expected sign and the

conclusion sign is also significant: among the positive conclusions those which involve a

double negation are less often inferred (65 inferences) than others (129 inferences) while for

negative conclusions cases, expected positive cases (142 inferences) are more comparable

with expected negative cases (123 inferences).  There is also an interaction between the

expected sign and Forward and backward inferences.  MP are more often applied (155

inferences) than AC (116 inferences) while DA (92 inferences) and MT (96 inferences) are

sensibly equal.  The best fitting model is: Conclusion sign * Expected sign * Response +

Expected sign * Infer Forward Backward * Response G2(20)=10.87807 p=.9492933.  This

is what INFERNET predicted.  ANOVA results confirm these effects.

Table 4.8
Log-linear analysis

and ANOVA on
human frequencies

of inference

Effect DF G2 p F DF p

Independence 15 157.6479 7.25 E-26
Premise sign 1 .0824 .7740710   .17991 1,21 .6757641

Infer Forward Backward 1 11.09174 .0008671 20.460381,21 .0001860
Expected sign 1 59.35807 1.31 E-14 42.84341 1,21 .0000017

Conclusion sign 1 44.13527 3.06 E-11 28.74675 1,21 .0000257
Cs*Es 1 4.893249 .0296190 22.858181,21 .0001007
Cs*I* 1 .785947 .3753285  5.66097 1,21 .0269077
Cs*Ps 1 2.658119 .1030225  2.88187 1,21 .1043537
Es*I 1 30.22554 3.85 E-8 12.99063 1,21 .0016667

Es*Ps 1 .003811 .9507752   .01991 1,21 .8891335
I*Ps 1 .002309 .9616748   .01711 1,21 .8971744

Cs*Es*I 1 .655936 .4179984  2.39586 1,21 .1365958
Cs*Es*Ps 1 3.839037 .0507227  1.43656 1,21 .2440483
Cs*I*Ps 1 2.489859 .1145820   .30327 1,21 .5876509
Es*I*Ps 1 .045465 .8311513   .43237 1,21 .5179715

Cs*Es*I*Ps 1 2.686908 .1011859  2.56607 1,21 .1241151
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The Table 4.9 shows mean and SD reaction times for the four major premises and the

four questions.  The double negation cases seems to be slower.

Table 4.9
Human means and

standard deviations
reaction times

MP DA AC MT
3⊃ X mean 3083 5345 4074 4739

SD 1749 5033 3414 2998
3⊃ ~X mean 3486 6588 7564 5739

SD 1483 5047 11470 3704
~3⊃ X mean 3948 6858 6546 12364

SD 2037 5758 15630 11058
~3⊃ ~X mean 4351 6352 5293 8211

SD 2838 4147 5808 10043

Data were analyzed by an ANOVA as a 4-way within-subjects design with 2 levels.

Normally, with 2 levels the sphericity assumption is not required, but the organization of the

data is somewhat artificially nested.  That is the reason why we took sphericity into account.

Since the sphericity assumption is violated and no transformation met it, the Box correction

was used (Box correction ε̂ =.236524).  ANOVA results are displayed in Table 4.10.

Table 4.10
ANOVA on human

Reaction times

Effect DF F p
Conclusion sign 1,9 11.01899 .0089476
Expected sign 1,9 18.23539 .0020794

Infer Forward Backward 1,9  6.27900 .0335415
Premise sign 1,9  3.68833 .0869831

Cs*Es 1,9 12.79157 .0059630
Cs*I 1,9  7.73862 .0213366

Cs*Ps 1,9 4.48006 .0633851
Es*I 1,9 .38741 .5491067

Es*Ps 1,9 .26015 .6222895
I*Ps 1,9 3.48920 .0946088

Cs*Es*I 1,9  7.80778 .0209085
Cs*Es*Ps 1,9   .29797 .5984255
Cs*I*Ps 1,9  2.26423 .1666501
Es*I*Ps 1,9   .97017 .3503749

Es*Cs*I*Ps 1,9   .13099 .7257598

The effect conclusion sign is significant: when the conclusion is negative people respond

faster (mean: 5295 ms) than when the conclusion is positive (mean: 6523 ms).  The effect of

expected sign is significant, this means that DA + MT (mean: 7025) are slower than MP +

AC (mean 4793 ms).  Forward inferences (MP+DA, mean: 5001 ms) are faster than

backward inferences (AC+MT, mean: 6816).

The interaction between the expected sign and the conclusion sign is significant: among

the positive conclusions those which involve a double negation are slower (mean: 8379) than

expected positive cases (mean: 4667 ms).  While for negative conclusion cases, expected

positive cases (mean: 4919) are approximately equal to expected negative cases (mean: 5770

ms).  Post hoc Tukey test indicates that double negation cases are significantly slower than

other cases.
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There is also an interaction between the conclusion sign and Forward and backward

inferences.  Among positive conclusion cases, forward inference cases (mean: 4993 ms) are

faster than backward inference cases (mean: 8054 ms).  While among negative conclusion

cases, forward inference cases (mean: 5010 ms) are approximately equal to backward

inference cases (mean: 5579 ms).  Post hoc Tukey test indicates that positive conclusion +

backward inference (AC for rules 3⊃ X, 3⊃ ~X and double negation MT) cases are

significantly slower than other cases.

The interaction conclusion sign * Expected sign * Forward and backward inferences is

also significant.  Post hoc Tukey reveals that the double negation MT cases are significantly

slower than any other cases.

While MP cases (mean: 4667 ms) are faster than other cases, Post hoc Tukey indicates

that these case are only significantly faster than DA cases.

These data show departures from both “Negative conclusion bias” and INFERNET

hypotheses.  MP cases are faster than other cases but not always significantly contrary to

both hypotheses.  Negative conclusion cases for DA and AC are not always faster than

positive conclusion cases, contrary to the “Negative conclusion bias” hypothesis.  Double

negation cases for DA are not always slower than other DA cases, contrary to INFERNET

hypothesis.

4 . 3 . 3 Conditional reasoning with negated constituents comparison between
INFERNET and humans

The Figure 4.9 compares the frequency of inference between INFERNET simulator and

human data.  These proportions are similar but a statistical measure is necessary.

Figure 4.9
Graph of

comparison between
human and

INFERNET simulator
frequencies of

inference.
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In Table 4.11 are displayed the statistical analysis concerning frequencies of inference.  A

Log-linear analysis was performed to test the effect of the contrast INFERNET-human (called
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“Group”)  on response frequency.  The G2 are underestimated because data were analysed

with a between-subjects design.  The Rasch model could not be applied because of the

between-within design.  Statisticians have not yet studied the application of log-linear

analysis to this type of design (Lindsey, personal communication).  The Table 4.11 also

displays ANOVA results on 1 between-subjects and 4 within-subjects factors with 2 levels

each.  The sphericity assumption was violated so a Box correction (ε̂ =0.73326) on the

number of degrees of freedom was performed.  Variances for the 16 measures are all

homogeneous across groups.  The Table shows the very close fit of INFERNET to human

data.

The best fitting model is Conclusion sign * Expected sign * Response + Expected sign *

Infer Forward Backward * Response G2(52)=26.40158 p=.9988014.  This is the prediction

of INFERNET resulting of the difficulty of double negation cases and the easiness of MP

cases.

Table 4.11
Loglinear analysis

and ANOVA on
human and
INFERNET

frequencies of
response

Effect DF G2 p F DF p

Group 1 2.0617 .1510416  1.03658 1,57 .3129203
G*Conclusion sign 1 .76531 .3815786   .59945 1,57 .4419876

G*Infer Forward Backward 1 1.01377 .3140014   .17426 1,57 .6779215
G*Expected sign 1 1.73554 .1877049   .42258 1,57 .5182640
G*Premise sign 1 .19013 .6628084   .54400 1,57 .4638053

G*I*Ps 1 .20816 .6482134   .28425 1,57 .5960018
G*Es*Ps 1 .04432 .8332594   .29243 1,57 .5907746
G*Es*I 1 .00699 .9333695  1.02189 1,57 .3163432

G*Cs*Ps 1 .66852 .4135681   .51546 1,57 .4757172
G*Cs*I 1 .00323 .9546782   .54777 1,57 .4622680

G*Cs*Es 1 3.00937 .0827845  2.82281 1,57 .0980689
G*Es*I*Ps 1 .138421 .7098558   .37244 1,57 .5441029
G*Cs*I*Ps 1 3.778989 .0519000   .66771 1,57 .4172535

G*Cs*Es*Ps 1 6.910677 .0085683  4.36393 1,57 .0411835.
G*Cs*Es*I 1 .071965 .7884969   .14240 1,57 .7073081

G*Cs*Es*I*Ps 1 1.669577 .1963245  1.72220 1,57 .1946702

Figure 4.10 displays the comparison between INFERNET and human reaction times.

Reaction times seem to be longer for humans but the overall shape is similar.

Figure 4.10
Graph of

comparison between
human and

INFERNET reaction
times.
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The reaction times were analyzed by an ANOVA with 1 between-subjects factors

(INFERNET vs. humans) and 4 within-subjects variables with 2 levels each.  The sphericity

assumption was violated, so a Box correction ε̂ =.2682286 was applied.  ANOVA results are

displayed in Table 4.12.

There is a significant main effect of group: reaction times are faster in INFERNET

(means: 4153 ms vs. 5909 ms for humans).  The significant effect of the interaction

group*conclusion sign means that INFERNET is faster for positive conclusion (mean: 4057

ms) than for negative conclusions (mean: 4249 ms) while for human it is the contrary

(positive conclusions mean: 6523 ms, and negative conclusion mean: 5295 ms).  This last

effect is probably due to the greater increase of reaction time for double negation cases MT in

human compared to INFERNET.  Reducing the learning constant in INFERNET would

probably increase all reaction times and the difference between double negation cases and

other cases.

Table 4.12
ANOVA on

comparison between
human and

INFERNET Reaction
times

Effect DF F p
Group 1,20 12.07717 .0023878

G*Conclusion sign 1,20 13.44253 .0015325
G*Expected sign 1,20 3.70113 .0687256

G*Infer Forward Backward 1,20 2.26443 .1480045
G*Premise sign 1,20 1.8171 .1927298

G*Cs*Es 1,20 2.84294 .1073147
G*Cs*I 1,20 3.37645 .0810386

G*Cs*Ps 1,20 4.75268 .0413727
G*Es*I 1,20 2.16598 .1566559

G*Es*Ps 1,20 .48607 .4937110
G*I*Ps 1,20 5.71672 .0267525

G*Cs*Es*I 1,20 .33985 .5664317
G*Cs*Es*Ps 1,20 .19024 .6673888
G*Cs*I*Ps 1,20 1.94634 .1782827
G*Es*I*Ps 1,20 2.22890 .1510585

G*Es*Cs*I*Ps 1,20 .26254 .6139927

4.4 Discussion

Connectionist modelling of human reasoning is a difficult challenge.  Even though Holyoak

& Spellman (1993) have described human reasoning in terms of constraint satisfaction, no

connectionist system has previously been done for moddeling human reasoning.

INFERNET shows how reasoning might be possible based on certain low-level

neurobiological mechanisms.  These properties constrain the reasoning process and explain

human limitations.  People are sensitive to negated conditionals.  INFERNET’s account of

the phenomenon involves the type of inference and double negation effects and challenges

classical explanations that rely on the notion of “Negative Conclusion Bias”.

It was predicted that the number of steps required to perform an inference constrained the

reasoning process.  Removing double negations requires a long chain of gates opening.  The

longer the chain of successive gates, the higher the number of errors, and the less opportunity
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for binding fixation.  This section presented INFERNET’s predictions and results.  These

results confirmed that INFERNET is sensitive to double negations.  A similar experiment has

been conducted on human participants.  Results confirmed INFERNET’s prediction and

showed that the INFERNET explanation is better than classical explanation in terms of

“negative conclusion bias”.  Finally, INFERNET and humans data were compared and there

is a high degree of qualitative similarity between the two.





5 The number of predicate’s
arguments constraints
processing

As we saw in chapter 2, the nodes representing the arguments of a predicate fire after the

nodes representing the predicate of these arguments.  Each predicate is assigned to a

particular window of synchrony inside a gamma cycle.  Thus, the more arguments a predicate

has, the more windows of synchrony will be needed to represent it.  For example “John buys

a car for Mary” needs 4 windows of synchrony, while “John loves Mary” needs 3 windows

of synchrony.  This constraint should have an effect on INFERNET’s performance.  This

section will present the psychological literature on the effect of the number of argument, then

will present INFERNET’s performance, and will finally compare human empirical data with

INFERNET.

5.1 The effect of the number of predicate arguments on
cognition

It is well known that people have a limited information processing capacity in terms of the

number of chunks concurrently available in STM (Miller, 1956).  Is there a similarly limited

capacity regarding the number of a predicate’s arguments?

Halford & Wilson (1980) have defined cognitive complexity on the basis of mathematical

structure.  The complexity of a statement depends on its dimension or on the number of

independent units that are involved in it.  This is related to the number of arguments that a

predicate has.  A predicate with one argument has one dimension of variation, a predicate

with two arguments has two dimensions of variation and each of them may vary

independently.  Since each predicate’s arguments ought to be mutually distinguished, they

should occupy a particular chunk in memory.  For a predicate with 2 arguments like

Love(John,Mary), a cognitive system must be able to distinguish the “lover” and the “lovee”.
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Halford & Wilson (1980) present two experiments that test how the number of

predicate’s arguments is related to developmental aspects of analogy making.  Children were

asked to move a truck around a square similar to Figure 5.1.  In group A children had these 3

operators: (remain in the same place, move clockwise and move counter-clockwise) while in

group B (remain in the same place, move clockwise and move diagonal).  Each of the moves

was represented by a geometrical figure.  In the first phase, children had to learn by trial and

error which move corresponded to the 3 geometrical forms presented by the experimenter.

When they succeeded, a new set of 3 geometrical forms was randomly assigned to each of

the permissible moves.  Children had to learn the new set of correspondences.

Figure 5.1
Environment used in

Halford & Wilson
(1980) experiment 1

first phase. Move clockwise

Move counter-clockwise

No move

Move diagonal

Move clockwise

No move

Group A system operators

Group B system operators

In the second phase, children had to relate the system they learned, to a problem with the

same structure but with new elements.  Three new geometrical forms were presented, and the

four states (each square corners) were represented by a colored house.  The experimenter

placed one of the four houses on a corner and the children had to place the houses around the

square in an appropriate way (consistent with permissible moves).  Children had no feedback

for this.  They only had feedback for the move corresponding to the cards like “move to the

green house”.  The group B permissible moves require more arguments because “move

clockwise” and “move diagonal” are not symmetrical while in group A “move clockwise” and

“move counter-clockwise” are.  In group B, children had to keep in mind 2 preceding moves

to decide which place to assign to a particular colored house.  Figure 5.2 shows that with the

group A operators, when the first card comes (move to green) the two alternatives are

equivalent and will not lead to inconsistency.  The maximum load is (yellow, green) and

(green, yellow).  Figure 5.3 shows that with the group B operators, when the first card

comes (move to green) the two alternatives are possible, one will lead to an inconsistency.

The maximum load is now (yellow,  green) (green, red) and (red, yellow).
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Figure 5.2
Diagram of Group A

operators analogy
task

move to green

move to yellow

Figure 5.3
Diagram of Group B

operators analogy
task

move to green

move to red

move to yellow
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Since the memory load for group B is higher than for group A, there should be more

errors in the group B.  Halford & Wilson (1980) found that 4 year old children succeeded

with system group A, but few 4 year old children succeeded with system group B while 6

year old children had a better performance.

Halford & Wilson’s (1980) second experiment involved a hexagon instead of a square

truck circuit.  Thus the information to be held in memory can involve more steps.  The

authors found that children could perform the task successfully around 11 years of age.

This empirical data seem to show that the ability to deal with a growing number of

arguments is a developmental function.  This hypothesis is also corroborated by Gentner &

Toupin (1986).  They defined systematicity as the potential use of embedded predicates like

Cause [Push (a,b), Collide(b,d)].  They observed that 10-year-old children were able to base

their analogies on the use of systematicity while 6 year old children had a tendency to base

them on surface similarity.  However, Goswami & Brown (1989) have shown that when a

causal relation linking 2 predicates is simple, younger infants can use it to derive an analogy.

This kind of two-level, embedded predicates can be used by trained chimpanzee also (see

Premack, 1983).  But higher order embeddings are more difficult.

In another experiment (see Halford, Wilson, Guo, Gayler, Wiles & Stewart, 1994),

experimenters presented to participants graphical representations and verbal descriptions of 3-

and 4-way statistical interactions.  The participant’s task was to map a verbal description to

the corresponding graphical representation.  Results show that mapping can usually be done

with 3-way interactions, but rarely with 4-way interactions.  Understanding interactions

requires the ability to embed predicates within each other.

Maybery, Bain & Halford (1986) compared transitive inferences requiring integration

with premise verification.  For example, deducing that “John is taller than Tom” from the

premises: “John is taller than Mike” and “Mike is taller than Tom” requires integration and

processing of two relations.  Verifying that “Mike is taller than Tom” requires the processing

of a single relation.  Reaction times are longer when integration is needed (see also Halford

Mayberry & Bain, 1986).

Halford, Bain & Maybery (1984) compared arithmetic problems in which participants had

to find the operator that was removed from an expression.  They showed that when two

operators were removed participants had to combine two operations.  In that case, a

secondary task interfered more with performance.

More recently, Kroger & Holyoak (1997) asked participants to detect changes in two

successive stimuli.  The rules for considering changes were involving three levels of

relational complexity.  At a perceptual level any modification of color was considered as a

change.  At the relational level a change was defined as a relation between color and 2 pairs of

squares.  At a system level, a change was defined as a relation between the sameness relation
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for two pairs.  The authors found that reaction time increased as the level became more

complex in terms of nesting of predicates.

Some connectionist computational models are sensitive to the number of predicate’s

arguments.  STAR (Halford, et al. 1994) uses a tensor product representation.  Each of the

predicate’s arguments is assigned to a particular dimension in the tensor product.

Representing a predicate with 2 arguments requires an array of 3 dimensions.  If a predicate

has 5 arguments it will require an array of 6 dimensions.  As the number of arguments

increases, the number of cells in the array increases by an exponential factor, so capacity to

process arguments is constrained.  Synchrony and phase-based models like LISA (Hummel

& Holyoak, 1997) , SHRUTI (Shastri & Ajjanagadde, 1993) or INFERNET represent each

argument binding with a particular phase or window of synchrony.  In these models, the

number of predicate arguments that can be represented depends on the oscillation frequency

and the precision of synchrony.

All of the preceding empirical studies compare situations that vary according to the

number of arguments needed but also with the level of nesting of these predicates (predicates

whose arguments are predicates whose arguments are predicates etc.).  In the following

section, we present empirical data that vary the number of arguments.  The task chosen is

disjunctive reasoning in which the number of arguments is manipulated.  Participants and

INFERNET will be compared with regard to the way they can apply disjunctive syllogisms.

This rule is generally well understood.  Imagine that you receive this major premise: “People

must be over 14 years old or be accompanied by an adult to get into a bar”.  Being confronted

with this fact “Mary is 10 and drinks a Coke in the bar”, you should easily conclude that there

is an adult with Mary.  Disjunctive syllogism is represented by this logical formulation:

    

A ∨ B[ ]~ A
B

(5.1)

In the context of psychology of reasoning, this task is called “Denial inference”.  People

seem to derive the correct conclusion ± 80% of the time (Roberge, 1976a, 1976b, 1977,

1978) .  This task seems also to be a little bit easier when the disjunction is considered as

exclusive (with the exception of Johnson-Laird, Byrne, & Schaeken (1992) study in which

the proportion of correct deduction was .48).  The discrepancy between Roberge  and

Johnson-Laird et al. data can reasonably be attributable to a difference in the participant

sample.  Roberge participants were undergraduate students, while Johnson-Laird et al.

participants were drawn from the general population.
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5.2 Effect of the number of Predicate’s arguments

5 . 2 . 1 Effect of the number of predicate’s arguments on INFERNET

INFERNET LTM

Figure 5.4 shows the knowledge encoded in INFERNET which deals with disjunctive

syllogism.  When one term of the disjunction is negated the other term is activated.

Remember that running INFERNET involves two phases.  The first phase is necessary to

learn the bindings.  A particular content will be linked to a role.  For example, a major

premise is presented Or (A B) with 10 ms separating “Or” and “A” and 25ms separating “Or”

and “B”.  From the diagram, it can be seen that “Or” will activate “1st Term” 10 ms later and

“2nd Term” 25 ms later.  Nodes composing the object “A” will fire in synchrony with nodes

composing “1st Term” and their connection weights will increase with a delay corresponding

to ∆tγ  the delay in ms corresponding to a gamma wave.  The same process will happen

between “2nd Term” and “B”.  The second phase in INFERNET is a question-and-answer

phase.  A minor premise is presented to INFERNET and a response will follow.  If negation

precedes “A” by 5 ms, the “A” nodes will excite “1st Term” nodes.  After a while these “1st

Term” nodes will fire in synchrony with “A” nodes.  From the conjunction of Negation

nodes and “1st Term” nodes, an AND-gate will open and “2nd Term” nodes will receive

activation.  These nodes will oscillate 20 ms later than A nodes.  Since “2nd Term” nodes

have been associated with “B” nodes, “B” nodes will fire also and will constitute the network

response.

Figure 5.4
The encoded

INFERNET
knowledge able to

deal with disjunctive
syllogism.

10

10

55

10

10

10

25

AND AND

Negation

Or 1st Term 2nd Term

In this experiment, the object which will constitute the terms of the disjunction will be

predicates with 1 or 2 arguments.  These predicates are encoded as Figure 5.5 shows.  Each

argument of a predicate must be linked with the predicate.  For example, the predicate “Pay”

excites 2 role arguments: the amount to be paid and the receiver of the money.
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Figure 5.5
Encoding of

predicates with their
role arguments Amount Receiver

Pobj Pto

Age

Aobj

Pay
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Hypothesis

The hypothesis that follows from INFERNET’s structure is as follows: The more arguments

predicates involved in a reasoning episode have, the poorer the performance.  Since every

predicate and its arguments occupy a distinct phase or window of synchrony, the more

arguments a predicate has, the more phases will be required.  If more phase are required, the

chances for overlapping of phases will increase.  The result will be that the different objects

to be distinguished will be less separated from each other.  It will happen that some nodes

constituting an argument will fire in the wrong window of synchrony and will be bound to

the wrong object.

Design

The design of INFERNET experiment has 1 between-subjects and 1 within-subjects variable.

The between-subjects variable is the number of predicates’ arguments.  The within-subjects

variable is the 2 questions asked to INFERNET (negation of the first term and negation of the

second term).

Material

Two major premises were constructed.  They differ according to the number of predicate

arguments involved.  The first major premise: Or [> (14), accompany (adult)] (i.e., “It is

required to be over 14 years old or be accompanied by an adult to get into a bar”) is assigned

to the “5 phases” group because this major premise requires 5 windows of synchrony.  The

second major premise is: Or [Pay (100, gatekeeper), Present (clients, owner)]  (i.e., “It is

required to pay 100 francs to the doorman or to present two clients to the owner to get into

the bar”) is the “7 phases” group rule.  It requires 7 windows of synchrony.  Two questions

by major premise were constructed.  When the question involves the negation of the first

term, it will be called forward, when the second term is negated, it will be called backward.

The forward questions are for the 5-phases group:  negation > (14) (i.e., “Mary has not
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more than 14 years old”), for the 7 phases group: negation Pay (100, doorman) (i.e., “Mary

did not paid 100 francs to the doorman”). The backward question are negation accompany

(adult) (i.e., “Mary do not accompany an adult”) for the 5 phases group and negation

Present (clients, owner) (i.e., “Mary did not present 2 clients to the owner”) for the 7

phases group.

Procedure and parameters

Each object in the experiment is composed of 12 nodes connected each other with a delay of

∆tγ .  In the learning phase, a rule is presented to INFERNET by making corresponding

nodes fire in a particular order (Figure 5.6A).  This input is repeated 10 times, which

corresponds to the number of gamma cycles in a burst.  The question is then presented to the

system (Figure 5.6B).  This serves to monitor the evolution of learning bindings.  This

response of the system will be used to evaluate reaction time.  This process is repeated 10

times (theta wave).  The firing nodes are recorded for every ms interval.  The question phase

follows.  In this phase, one of the two terms is presented in input with negation (Figure

5.6B). The firing nodes are recorded for every ms interval.  The network reaction to negation

of the other term is recorded in the same manner.  These data files will be used to calculate the

proportion of INFERNET’s correct responses.

Figure 5.6
A. Binding learning

phase input.  B.
Question phase

input

Or

>

14

Accompagnate

Adult

>

14

Accompagnate

Adult

Negation

A

B

Results

When the network has learned the bindings, it will be able to answer the questions correctly.

Figure 5.7 shows a histogram of object node firing time following a question for the “5

phases” group.  “Negation”, “>“ and “14” nodes fire as input and begin to oscillate.
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Activation is propagated from “>“ to “1st Term” which begin to oscillate one cycle afterward

in synchrony.  In the meantime, activation is propagated from “>“ to “age”.  From “negation”

and “1st Term” the AND-gate opens and the activation is transmitted to “2nd term”.  “2nd

Term” excites “Accompany” which begin to fire in synchrony.  “Accompany” nodes excite

“A-obj” nodes which activate “Adult” nodes in synchrony.

Figure 5.7
INFERNET reaction

to the question
“negation > 14” >

14

Accompagnate

Adult

Negation

1st Term

Age

2nd Term

A-Obj

Figure 5.8 shows INFERNET’s response following “negation pay 100 doorman” in the

“7 phases group”.  The principle of activation propagation is the same as in the other group.

Here, the reader can see that the lag around the different arguments of predicates are shorter.

So the likelihood of confusion increases.

Figure 5.8
INFERNET reaction

to the question
“negation pay 100

gatekeeper”

Negation

1st Term

2nd Term

Pay

Amount

100

Receiver

Gatekeeper

Present

Presented obj

Clients

Presented to

Owner
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The performance of INFERNET was measured as described in section 2.8.  The

frequency of correct inferences is reported in Table 5.1.  INFERNET was run 20 times on

each of the problems (5 phases and 7 phases).  The overall performance of INFERNET is

quite high, with a slight advantage for the 5-phase group.

Table 5.1
Frequency of

correct response in
INFERNET (n=20)

5 phases 7 phases
Forward 14 13

Backward 14 13

Is this difference significant?  According to a log-linear analysis, reported in Table 5.2,

there is no significant difference between the performances of the two groups.  There is no

difference between forward and backward questions.  Finally there is no interaction effect.

Since there are only 2 questions for each trial, it is not necessary to take the repeated measure

into account (see appendix B).

Table 5.2
Max likelihood chi

square for
INFERNET data

DF G2 p

Independence 3 .228088 .9729319
Direction 1 0 1

Phase 1 .2280880 .6329452
Direction*phases 1 0 1

Table 5.3 reports mean and SD reaction times for both groups on the only forward

question.  The “7 phases” seems to be slower than the other group.

Table 5.3
Means and Standard

deviations
INFERNET

5 phases 7 phases
Mean 4991 5993
SD 762 1182

Effects of the number of phases was analyzed by a t-test for independent samples.  After

an inverse (1/x) transformation of reaction times, variables fit the normal distribution and

variances are homogeneous across groups.  This transformation can be justified by the fact

that the inverse of reaction time is speed.  Table 5.4 shows the t-test results.

Table 5.4
effect of the number

of phase on
INFERNET speed of

processing.

Effect DF t 2 tailed p
Phases 38 3.472401 .0013028
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As we see in Table 5.4, the difference of speed between “5 phases” and “7 phases” group

is significant.  We can conclude that INFERNET is sensitive to the number of predicate’s

arguments.  In the following section a similar task will be proposed to human.

5 . 2 . 2 Experiment 2: Effect of the number of Predicate’s arguments

This experiment studies the effect of the number of predicate arguments on disjunctive

reasoning.

Participants and design

The experiment has a mixed design with 1 between-subject variable and 1 within-subjects

variable.  Forty participants received one of the two disjunctive premises in a random order

and had to answer two questions in a random order.  The 40 participants were undergraduate

psychology majors, 22 females 18 males, median year: 3rd (around 21 years old).

Material

Two disjunctive premises were constructed.  The first contained predicates with one

argument: “It is required to be over 14 years old or be accompanied by an adult to get

into a bar.”, the second involved predicates with two arguments: “It is required to pay 100

francs to the doorman or present two clients to the owner to get into the bar.”  (In

French, the two major premises involved the same number of words.)  These two major

premises were attributed respectively to the “5 phases” and “7 phases” groups.  Two minor

premises or questions were constructed for each group denying the first term and the second

term.  For the first group, the negated first term question was: “Helen is 10 and is in the

bar, what do you conclude?”, while the negated second term question was: “Mark is alone

in the bar, what do you conclude?”.  For the “7 phases” group the negated first term

question was: “Helen gave 10 francs to the doorman, what do you conclude?”, while the

negated second term question was: “Mark presented one person to the owner, what do

you conclude?”.

  To verify further that the two groups’ stimuli were comparable except for the number of

arguments, a lexical decision task was performed on the words used in both groups.  The

participants were undergraduate psychology majors (14 females 6 males) mean age: 21.8 SD:

2.09.  The mean and SD reaction times are displayed in Table 5.5.

Table 5.5
Means and SD

reaction times by
word present in each

stimulus

5 phases 7 phases
Mean 765.7535 779.4844
SD 269.6622 255.0238
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An ANOVA with one within-subjects factor on mean word latency for each sentence has

been performed.  Variances are homogeneous.  There are only two levels in the within-

subject factor, so the sphericity and compound symmetry assumptions are not taken into

account.  Table 5.6 shows the ANOVA results.  As one can see, there is no significant

difference between the two groups regarding the mean reaction time to decide if strings are

words or not.  We can be reasonably confident, therefore, that the two groups stimuli are

comparable.

Table 5.6
Repeated measure

Anova on word
latency

Effect DF F p
Repeated measure 1,19 .9981411 .3303154

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  The major premise

appeared on the screen.  Participants were asked to read it and to indicate when they

understood it.  The major premise stayed on the screen during the entire experiment.

Questions appeared on the screen, one at the time and in random order.  Participants had to

answer each question.  The computer recorded the time required for them to respond.  The

experimenter recorded the response.  Before presenting the experimental material, participants

received training exercises with the same procedure, but with an arithmetic content.  The

refreshing frequency of the computer monitor was 75 Hz so the timing precision is about 13

ms.  In the program which was written for the experiment, all processor interrupts were

blocked to be sure that no other time-shared process interfered with time measurements.

Results

Frequencies of sound responses are displayed in Table 5.7.  As the reader can see, there is

little difference between groups or between forward and backward inferences.

Table 5.7
Humans’

frequencies of
correct responses

5 phases 7 phases
Forward 17 16

Backward 15 14

Are there any significant differences?  Table 5.8 displays the log-linear results.  None of

the differences is significant: there is no effect of the number of arguments nor of the

direction (forward vs. backward), the interaction is not significant.  To confirm all,

independence is not rejected.
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Table 5.8
Max likelihood chi
square for human

data

DF G2 p

Independence 3 1.453773 .6929822
Direction 1 1.1587794 .2817188

Phase 1 .2913863 .5893335
Direction*phases 1 .0077896 .9296718

Its time now to look at reaction times.  Table 5.9 shows mean and SD reaction times for

the two groups and the two questions.  The 7 phases group appears to be slower and the

backward question seems to be answered faster.

Table 5.9
means and Standard

deviations Human
data

5 phases 7 phases
Forward Mean 5321 7821

SD 2770 2966
Backward Mean 4927 6999

SD 2441 4923

Data were analyzed by a 1 between-subjects (phases) and 1 repeated measure (direction)

ANOVA.  Variables did not fit the normal distribution and variances and covariances were

not homogeneous.  After transforming data into speed (inverse transformation), the

homogeneity of variances and covariances assumption was met.  Normality assumptions

were also met for both forward and backward responses.  There are only two levels in the

within-subjects factor, so the sphericity and compound symmetry assumptions are not taken

into account.  ANOVA results are displayed in Table 5.10.

Table 5.10
Anova on human

reaction times

Effect DF F p
Phases 1,38 18.74553 .0001050

Direction 1,38  3.30003 .0771730
Phases*Direction 1,38   .24498 .6234805

The results shown in Table 5.10 indicate a strong significant main effect of the number of

predicate’s arguments on the speed of processing.  This is in agreement with INFERNET’s

results.

5 . 2 . 3 Comparison of simulator and humans data

Figure 5.9 compares the proportion of correct responses between the INFERNET simulator

and human data.  These proportions are similar but a statistical measure is necessary.
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Figure 5.9
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Table 5.11 shows the statistical analysis of the frequencies of correct responses.  A Log-

linear analysis was performed to test the differences between INFERNET and human.  The

Table shows that no effect involving the variable Group ( which can takes two values

INFERNET or human) is significant.

Table 5.11
Max likelihood chi

square comparison
between INFERNET

and human data

DF G2 p

Independence 7 3.696693 .8139659
Group 1 2.027644 .1544599

Group*Direction 1 .6462109 .4214706
Group*Phase 1 .008543 .9263577

Group*Direction*phases 1 .0044276 .9469479

Figure 5.10 compares INFERNET and human reaction times.  Reaction times appears to

be longer for humans, especially for the “7 phases” group.

Figure 5.10
Comparison of
reaction times
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The reaction times were analyzed by an ANOVA with 2 between-subjects factors (number

of phases, contrast INFERNET-humans).  Variables did not fit the normal distribution and

variances were not homogeneous across groups. Since no transformation meets assumptions,

the Brown and Forsythe (1974) procedure for multi-way ANOVA was used.  Results are

displayed in Table 5.12.

Table 5.12
Anova comparing

human and
INFERNET reaction

times
f=21.0267

Effect DF DFcorr F p
Group 1,76 1,21 4.223011 .0525298
Phases 1,76 1,21 6.192374 .0213029

Group*Phases 1,76 1,21 3.391533 .0797017

The Table shows that effects containing the contrast INFERNET-humans are not

significant (no significant group effect, no significant interaction effect).

5 . 2 . 4 Discussion

INFERNET’s prediction appears to be correct: the more arguments that predicates involved in

an episode of reasoning have, the more difficult the task.  It is not a prediction that

INFERNET alone could make; other models would also predict this effect.  Symbolic models

are too powerful to simulate people’s difficulties with the number of predicate arguments

unless one limits the number of arguments by an external mechanism.  This kind of ad-hoc

constraint, which is very common in cognitive symbolic models, is less plausible than a

constraint that emerges from the structure of the model itself.  In contrast, connectionist

models like INFERNET, LISA, STAR, do possess in their structure something that

constraints argument processing.  STAR is a tensor-product architecture and the more

arguments a predicate has the more dimensions the required array will need, and so the total

number of required nodes will increase exponentially.  LISA and INFERNET are based on

phases and synchrony.  In both of these models, predicates and their arguments need their

own phases, since the overlapping of phases constrains the binding process, the more phases

that are required, the more likely there will be an error.  LISA and INFERNET and all

synchrony based binding systems have an advantage over tensor product binding based

system, in that they are motivated by neurobiological considerations.  LISA and STAR have,

however, an advantage over INFERNET.  They have the capacity to embed predicates (i.e. a

predicate with an argument that is also a predicate).  The version of INFERNET presented

here does not have this capability.  A possible enhancement of INFERNET to do this will be

discussed in the Chapter 8.

However, we only observed significant effects on reaction time and not on accuracy,

where differences were not significant.  This would imply that the cognitive system has a
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means of simplifying the task, and that this process should take time.  This process could be

compared to “chunking”.  This simplifying process should also be required when too many

phases or separate bindings are required.  However, sometimes it is not possible, and the

cognitive apparatus reaches its limits.  This is the case when predicates are embedded.  For

example in Halford et al. (1994) study, they observed that the understanding of four way

statistical interactions were almost impossible.

If humans, when confronted with a large number of predicate arguments use chunking to

reduce the number of concurrently activated chunks, this process should take time, and it

should take less time when the chunking is obvious.  The following experiment manipulates

the ease of chunking predicate arguments.

5.3 Experiment 3: Reducing the number of a predicate’s
arguments

If arguments are coded by phases, when facing predicates with many arguments, a cognitive

system may collapse or try to reduce the number of phases required to represent predicate and

role bindings.  In some situations, it should be easier than in others.  For example, If there is

two equivalent predicates with the same argument roles but bound to different contents, it

should be easy to group the two instances of a particular predicate and to bind argument’s

roles to two contents.

To test the last prediction, we ran a conditional reasoning experiment comparing two

situations.  Both situations involve 2 predicates with the same number of arguments.  In one

situation, there is a possibility of grouping the two predicates and their arguments; in the

other, this is much more difficult.

This task of conditional reasoning refers to material implication.  People’s inferences use
four types of logical rules: Modus Ponens p⊃q, p

q
, Modus Tollens p⊃q,~q

~p
 (sound inferences)

Denying the antecedent p≡q,~p

~q
 and Affirming the consequent p≡q,q

p
 (sound only in material

equivalence).  For a more detailed introduction to conditional reasoning see chapter 4.

Participants and design

The experiment has a mixed design with 1 between-subjects variable and 1 within-subjects

variable.  28 participants (14 by group) received one of the two conditional premises,

randomly selected, and had to answer four questions, chosen in a random order.  The 28

participants were undergraduate psychology majors, 18 females, 10 males, median year: 3rd

(around 21 years old).
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Material

Two conditional major premises were constructed.  The first contained two identical

predicates with three arguments: “If Tom gives a candy to Gus then Tom has given a candy

to Lawrence”, the second involved 2 different predicates with three arguments: “If Tom

gives a candy to Gus then Tom has stolen money from Mary”.  (In French, the two major

premises involved the same number of words.) These two major premises were attributed to

the “easy chunking” and “hard chunking” groups, respectively.  Four minor premises or

questions were constructed for each group each corresponding to the four types of

inferences, they are shown in Table 5.13

Table 5.13
The four questions
and anwers in each

group

Modus Ponens Denying the
Antecedent

Affirming the
Consequent

Modus Tollens

Easy
chunking

group

from Tom gives a
candy to Gus infer
Tom has given a

candy to Lawrence

from Tom does not
give a candy to

Gus infer Tom has
not given a candy

to Lawrence

from Tom has
given a candy to
Lawrence infer

Tom gives a candy
to Gus

from Tom has not
given a candy to
Lawrence infer

Tom does not give
a candy to Gus

Hard
chunking

group

from Tom gives a
candy to Gus infer

Tom has stolen
money from Mary

from Tom does not
give a candy to

Gus infer Tom has
not stolen money

from Mary

from Tom has
stolen money from

Mary infer Tom
gives a candy to

Gus

from Tom has not
stolen money from

Mary infer Tom
does not give a
candy to Gus

  To verify that the two group stimuli were comparable excepting for predicates, a lexical

decision task was performed on the words used in the 2 groups (only differing words are

taken into account).  The participants who did the lexical decision task were not the same as

those who participated in the final experiment, but were also undergraduate psychology

majors (14 females 6 males) mean age: 21.8 SD:  2.09.  There was one missing value.  The

mean and SD reaction times are displayed in Table 5.14.

Table 5.14
Means and SD

reaction times by
words present in

each stimulus

Easy Hard
Mean 704.1930 696.2807
SD 151.9474 186.9257

An ANOVA within-subjects on mean word latency for each sentence was performed.

Variances are homogeneous. There are only two levels in the within-subject factor, so the

sphericity and compound symmetry assumptions are not taken into account.  Table 5.15

shows the ANOVA results.  There is no significant difference between the two groups for

mean reaction times to decide if a string is a word or not.  We can be more confident now that

the two groups’ stimuli are comparable.
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Table 5.15
Repeated measure

Anova on word
latency

Effect DF F p
Repeated measure 1,18 .0948364 .7616516

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  A major premise

appeared on the screen.  Participants were asked to read it and to indicate when they had

understood it.  The major premise stayed on the screen during the entire experiment.

Questions appeared on the screen, one at the time and in random order.  Participants had to

answer each question.  The computer recorded the time required for them to respond.  The

experimenter recorded the response.  Before presenting the experimental material, participants

received training exercises with the same procedure, but with an arithmetic content.  The

refreshing frequency of the computer monitor was 75 Hz so the timing precision is about 13

ms.  In the program written for this experiment, all processor interrupts were blocked to be

sure that no other time-shared process interfered with timing measurements.

Hypothesis

If we consider that predicates and arguments are coded by phases, each of the two major

premises used in this experiment would need 8 phases or windows of synchrony (4 for each

of the antecedent and consequent part of the “if, then” clause).  The possible predicate

representation could be for the first major premise: If-then [give (Tom, candy, Gus), give

(Tom, candy,Lawrence)], and for the second major premise: If-then [give (Tom, candy,

Gus), steal (Tom, money, Mary)]. It will be possible to reduce the first major premise to:

give [Tom, candy, If-then (Gus, Lawrence)] which need 5 phases for encoding the

antecedent and consequent parts.  This shortening would not be possible for the second major

premise.  Despite the fact that it would require some time for transforming the first major

premise, the reducing of the number of phases should help.

Results

Frequencies of responses are displayed in Table 5.16.  As the reader can see, there is a

slightly higher rate of inference for the easy chunking group.

Table 5.16
Humans frequencies

of inference n=14

MP DA AC MT
easy 14 12 12 11
hard 12 9 8 10
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Are these differences significant?  Table 5.17 displays the log-linear results.  The G2 are

underestimated because data were analysed with a between design.  The Rasch model could

not be applied because of the between-within design.  Statisticians have not yet studied the

application of log-linear analysis on this type of design (Lindsey, personal communication).

Anova between-within results are also displayed in Table 5.17.  The sphericity assumption is

met. Variances across group for the four repeated measures are all homogeneous.

According to the Log-linear analysis, there is a significant difference between the easy (49

inferences) and hard (39 inferences) chunking groups.  However this difference is not

confirmed by an ANOVA.  Since an ANOVA requires the dependant variable to at least be

taken from an interval scale, we are more prone to believe a log-linear analysis, especially

since G2 is underestimated.

Table 5.17
Max likelihood chi
square and anova

for human data

DF G2 p F DF p

Independence 7 13.26572 .0659313
Chunking 1 5.672623 .0172317 3.591160 1,26 .0692589
Inference 3 5.728730 .1255804 1.938983 3,78 .1301726

Chunking*Inference 3 2.101684 .5515795  .440678 3,78 .7245547

Table 5.18 shows mean (and SD) reaction times for the two groups and the two

questions.  MP appears to be faster than other inferences. The easy chunking group also

seems to be faster than hard chunking group.

Table 5.18
Means and SD

reaction time
humans

MP DA AC MT
Easy Mean 4573.071 6778.000 5123.214  8169.93

SD 2293.408 4952.844 3144.627 9149.461
Hard Mean 6137.786 9351.500 6960.429 10070.36

SD 2942.197 5796.474 3488.050 7919.526

Effects are computed by an analysis of variance with 1 between-subjects  (chunking) and

1 within-subjects (inference) variable.  The sphericity assumption is violated.  After

transformation (1/x) this assumption is no longer violated.  Variances across groups are all

homogeneous.  ANOVA results are displayed in Table 5.19.

Table 5.19
ANOVA on Reaction

times

Effect DF F p
Chunking 1,26 5.186696 .0312242
Inference 3,78 6.072524 .0009060

Chunking*Inference 3,78  .428162 .7333792

The effect of chunking is significant.  When using predicates that can be easily merged,

people are faster (mean: 6161 ms) than when they cannot merge them (mean: 8130 ms).

There is also a significant effect of the inference.  A Post hoc Tukey test reveals that MP
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(mean: 5356 ms) is significantly faster than DA (mean 8065 ms), than MT (mean: 9120 ms),

but not significantly faster than AC (mean: 6042 ms)  Finally, there is no significant

interaction effect.

5.4 General discussion

As is described in section 5.1, people seem to be sensitive to predicate embedding.  This

section tried to explore whether people are sensitive to the number of predicate arguments.

The first experiment showed that there is a relation between the number of arguments and the

speed of processing disjunctions.  The second experiment examined the possibility of

reducing the number of arguments by chunking.  We found that when chunking is possible,

reaction times decrease.

The experiment 2 explored the number of arguments of a predicate and its effect on

disjunctive reasoning.  The lack of a significant difference between the frequencies of

responses in this experiment can be interpreted in two ways.  The processing capabilities

does not depend on the number of predicate arguments.  In this case, we would not expect to

find differences in reaction time.  The second possibility is that mechanisms exist to deal with

numerous arguments and the application of these mechanisms should take time, thereby

increasing reaction times but not affecting response accuracy.

What is the nature of these mechanisms?  There could be numerous mechanisms of

reduction.  In experiment 3, we explored the possibility of phase reduction and we obtained

faster reaction times for a case that seemed to be easier to reduce a-priori.  This case seems

simpler to reduce but also involves a double instantiation of the predicate.  As we will see in

chapter 6, double instantiation does increase reaction time, but not dramatically.  This would

suggest that the time lost in processing the double instantiation is more than recovered by the

decrease in the number of phases.



6 Constraints on Multiple
Instantiation

The problem of multiple instantiation concerns the ability to handle different instances of the

same object simultaneously.  From these two facts: “Pepin the Short was the son of Charles

Martel” and “Charlemagne was the son of Pepin the Short”, one can infer that Charles Martel

was the grandfather of Charlemagne.  This inference requires two instantiations of “Pepin the

Short”: the first in the role of son, the second in the role of father.  For a connectionist model

that does not use a working area receiving copies of items from a long-term knowledge base,

the problem of  multiple instantiation is a particularly thorny one.  People are able to deal with

multiple instances, unlike most connectionist models, but their performance when doing so is

nonetheless reduced.  On the other hand, there is no decrease in performance for symbolic

models doing multiple instantiation.  A good cognitive model should reflect both human

competence, and human limits.  Different connectionist solutions to the problem of multiple

instantiation are reviewed and their merits examined.  The INFERNET solution is then

presented.  It does not separate the long term knowledge base from a working area and has

no recourse to copies.  This solution constrains the process of multiple instantiation in a way

that better reflects human data.  Empirical data are compared with INFERNET’s

performance.

6.1 Introduction

Multiple instantiation involves the simultaneous use of the same parts of the knowledge base

in different ways.  Knowing that “John is in love with Louise” and that “Louise is in love

with John”, one can readily infer that they should be happy.  To arrive at this conclusion, one

must instantiate the predicate “is in love with” and the objects “John” and “Louise” twice.

Precisely how this is done is what certain authors (Barnden, & Pollack, 1991; Mani, &

Shastri, 1993) call the problem of multiple instantiation.  This problem is also called “the

type-token problem” (Norman, 1986; Dyer, 1991).  This problem is related to, but not
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equivalent to, the binding problem.  Even if a connectionist model solves the binding

problem, it does not mean that the problem of multiple instantiation is solved.  However,

solving the problem of multiple instantiation requires the binding problem to be solved.

Symbolic models that load copies of pieces of knowledge into a working area before

transforming them have no problem with multiple instantiation.  They simply make several

copies of the same content from the long-term knowledge base (LTKB) and place them in the

working area (see Figure 6.1).

Figure 6.1
Straightforward

symbolic solution to
the problem of

multiple
instantiation.

Love Lover Lovee

John Louise

Love Lover Lovee

JohnLouise

Copy 1

Copy 2

LTKB

Working Area

Represent “Louise loves John and John loves Louise”

However, for connectionist models that use the structure of the knowledge base itself as

the place where concepts are associated and transformed, and where inferences are drawn,

multiple instantiation poses a serious problem (see Figure 6.2).  How can the same part of the

knowledge base be associated with different roles at the same time without making several

copies of the knowledge in question?  Multiple instantiation also poses significant problems

for distributed representations.  Two closely related concepts will, in principle, share nodes.

If both concepts are needed simultaneously, their common parts must be associated with two

different entities.
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Figure 6.2
The problem of

Multiple
Instantiation for
Connectionism

Love Lover Lovee

John

Louise

Can be interpreted as:

John loves Louise
Louise loves John
Louise loves Louise
John loves John
John loves Louise and John
Louise loves John and Louise
…

The ability to handle multiply instantiated concepts assigned to different roles at the same

time is required for many cognitive tasks, for example:

• Transitive inferences: Knowing that redwoods are taller than sequoias and that

sequoias are taller than baobabs, a cognitive system should be able to infer that

redwoods are taller than baobabs.  This task requires two instantiations of the same

predicate “taller” and two instantiations of the object “sequoias,” each of them

assigned to two different roles, “taller object” and “shorter object”.

• Symmetric and non-symmetric inferences: From “John loves Louise” and “Louise

loves Gary”, the system should be able to infer that “John is jealous of Gary.” Here

again, the task involves two instantiations of the predicate “love” and two

instantiations of “Louise” in the role of “lovee” in the first sentence and in the role of

“lover” in the second.

• Recursion: Understanding this sentence: “The boy who kisses the girl who kisses the

cat was my friend” requires recursive predication.  Specifically, it needs two instances

of “kiss” and of “girl,” successively assigned to the role of “kissee” and “kisser”.

6 . 1 . 1 Connectionism and Multiple Instantiation

 As indicated in chapter 2, connectionist networks do not typically separate LTKB from a

temporary store (or a working area), inside which copies of pieces of LTKB are loaded

before transformation.  In these models, transient activation of the LTKB creates a Short

Term Memory (STM).  For models that do separate LTKB and STM (most traditional AI



112 Chapter 6: Constraints on Multiple Instantiation

models), multiple instantiation is not a problem since the system can make as many LTKB

copies as needed in STM.  Lacking this copying process, neural nets suffer from

“crosstalk.”(Feldman, 1982).  Adding “John loves Mary” to “Gary loves Rita” can create

pseudo-memories (Dyer, 1991) like “John loves Rita”.  Even if we assume that John and

Gary are bound to their role  of lover, and Mary and Rita to their role of lovee, both men and

both women remain associated with the same  respective roles.  What we need is a way to

distinguish the two facts by separating the two identical predicates and their respective roles

bindings.

The problem of multiple instantiation arises in localist networks (where each concept is

represented by one node) that can represent n-ary predicates (predicates with more than one

argument), if two predicate instantiations differ by more than one value of their arguments.

For example, “Jack eats eggs and Jack eats fish” does not require separate instances of the

predicate “eats” since this statement is equivalent to “Jack eats eggs and fish”.  However,

when two sets of two fillers must be associated with identical pairs of roles, the system must

be able to handle two copies of the predicate and argument slots.  For example, “Jack eats

eggs and Mary eats fish” cannot be reduced to “Jack and Mary eat eggs and fish,” otherwise

one can no longer distinguish who eats what.

The problem for distributed networks is even more difficult.  Multiple instantiation

problems arise as soon as one node must be used by entities that have to be differentiated.  If

an n-ary predicate must be represented where either predicate arguments or arguments’ fillers

need to use a common node, this node will have to be bound to different roles.  However,

since distributed architectures represent individual objects with many nodes, the problem will

only occur if a significant number of shared nodes are assigned to different objects.

6 . 1 . 2 Relevance for Cognitive Science

Is it really necessary to solve the multiple instantiation problem?  This issue was raised by

Donald Norman (1986) in the context of  the limits of Parallel Distributed Processing (PDP)

models.  He concluded that PDP limitations regarding the type-token problem could be a

blessing in disguise because tasks involving multiple instantiation are precisely those tasks

that cause difficulties for humans.  Empirical evidence of these difficulties comes from:

Reasoning

The problem of multiple instantiation arises when one role must be bound to different objects

or if a single object must be bound to different roles.  Compare two equivalent questions: “If

John is better than Dick and John is worse than Pete, then who is the best?” and “If John is

better than Dick and Pete is better than John, then who is the best?”.  These two sentences are
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equivalent with regard to this definition of the multiple instantiation problem, since predicates

like “Worse than” and “Better than” use the same arguments, i.e. “best-object” and “worst-

object”.  And in fact, no significant reaction-time and correctness differences between these

two situations has been found (Clark, 1969; De Soto, London, & Handel, 1965; Sternberg,

1980).  However, when the number of premises increases, the number of roles bound to one

object can be increased.  For instance, compare this situation where each object is bound to a

maximum of two roles: “A is on the right of B, C is on the left of B, D is in front of C, E is

in front of A” with the following situation where one object “A” is bound to three roles “A is

on the right of B, C is on the left of A, D is in front of C, E is in front of A”.  People are

slower and make more mistakes in the second situation (Schaeken, Johnson-Laird, &

d’Ydewalle, 1996; Carreiras, & Santamaria, 1997).

Studies of reasoning have not generally been designed to test multiple instantiation

effects.  However, Sougné, & French (1997) did manipulate the extent of multiple

instantiation and demonstrated that increasing instantiations increases reaction time.

Similarity and Working Memory

The phonological similarity between letters or between words produces replacement errors or

impaired immediate serial recall in working memory (WM) tasks (Baddeley 1966a, see

chapter 3).  However, semantic similarity does not produce as many errors.  Visual similarity

among items has also been found to impair WM (Longoni, Scalisi, 1994; Walker, Hitch, &

Duroe, 1993).  The relevance of these effects to the problem of multiple instantiation is based

on an assumption of distributed representations — namely, the more similar stimuli are, the

more they will share common features and common nodes.  Recalling a set of similar stimuli

should involve binding more shared nodes to different groups of nodes than  recalling

dissimilar stimuli.  Therefore, recalling similar stimuli should be more difficult.  Why is

immediate serial recall not impaired for semantically similar words?  The absence of a

semantic similarity effect could be due to the type of WM tasks.  We do not know the level at

which semantic properties of stimuli are processed.  For example, Sougné & French (1997)

found in reasoning tasks that semantic similarity does, in fact, slow down the participants’

reaction time.

Similarity in perception

Perceptually similar objets should as well share something in the neurobiological level.

Consequently, the perception of similar objects should require dealing with multiple

instantiation. Treisman & Gormican (1988) showed that discriminating objects is more

difficult if objects share common features.  Ivry & Prinzmetal (1991) observed more illusory

correlations between similar than dissimilar objects.
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Repetition blindness

When a word is included twice inside a list of rapidly (less than 150 ms) presented words,

humans tend to not report the second occurrence of the repeated word.  Kanwisher (1987)

called this repetition blindness.  This effect  has been observed with different types of stimuli

(Kanwisher, Driver, & Machado, 1995; Hochhaus, & Johnston, 1996; Bavelier, & Potter,

1992), but the most intriguing effect has been shown by Harris & Morris (1999) and Morris

& Harris (1997).  They showed that repetition blindness can occur between different words if

they share letters.  The second occurrence of repeated letters can be omitted and the

unrepeated letters of the second word can be combined to generate illusory words.  For

example, the stimulus “sleep creep azy” can be reported as “sleep crazy”.  Repetition

blindness has also be found to occur at the semantic level (MacKay, & Miller, 1994).

Animal studies

Terrace (1991) trained pigeons to reproduce a particular pecking sequence on 5 keys.  The

visual appearance of the keys was manipulated.  After training, the time for the pigeons to

reproduce the sequence was recorded.  When the five keys are distinguishable by color, the

time to reproduce the sequence is longer than when some keys are distinguishable by color

and others by form.  In the first case, the five keys share something in common.  They are

more similar than when 3 keys involve colors and two keys involve forms.  Terrace (1991)

manipulates the ease of chunking and shows that if there is no possibility of grouping colors

on one side and forms on the other side it takes more time for the pigeon to reproduce the

sequence.  Terrace & Chen (1991) experiment 1, using the same materials, showed that it

takes more time to train pigeons with homogeneous list of colors (increased similarity) than

with a list involving a segregated list of colors and forms.

These data show that multiple instantiation can indeed cause problems for humans and

animals.  But they also show that the cognitive apparatus has developed the means of dealing

with the problem.  Confronted with multiple instantiation, people tend to be slower or to

make more mistakes.  Consequently, a good model should not only be able to deal with

multiply instantiated concepts, but should also reflect the difficulties that humans have with

them.

6 . 1 . 3 Connectionist Solutions

The solutions that connectionists have developed fall into 3 categories.  The first type uses

two systems, a LTKB and a working area into which copies of pieces of LTKB are loaded.
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The second type of solution relies on several copies of the same concepts in the LTKB.  The

third uses different frequencies of oscillation.

Multiple copies loaded in a working area

This is the straightforward solution borrowed from symbolic models in which each additional

instance of an entity that is required will be represented by an additional copy of this entity

inside some sort of short term memory store (see Figure 6.1).  Bookman and Alterman

(1991) combine a localist semantic network that stores relationships between concepts with a

distributed network of semantic features that determines which schema slots will get filled.

Each combination of a concept instance and its associated role will lead to a new schema

containing the information.  Each additional instantiation of the concept  will be stored in a

new schema.

Another model, COMPOSIT (see Barnden, 1991, 1992, 1994; Barnden & Srinivas,

1991) uses two systems, a LTM and a WM, both of which are connectionist networks.  In

this model, WM is composed of several registers filled with activation patterns from LTM.

Concept instances and their roles are stored in registers.  Each additional instantiation is

stored at a particular location in WM.  Predicates, related roles and fillers are stored

contiguously and thus can be linked to a particular role pertaining to another predicate.  This

allows the embedding of role binding required, for example, for recursive reasoning.  This

solution is probably the most powerful one and allows a broad range of high level inferencing

capabilities.  The processing of multiple instantiations is still unconstrained.

In conclusion, models that separate “LTM store” and “WM store” inadequately reflect

difficulties people have when they perform multiple instantiation.  For these models, even if

WM store has a limited capacity, it is as easy to load one copy as to fill WM with copies of

the same content from LTM, unless this is prevented in an “ad hoc” manner.  Other solutions

have been developed, however, in which WM store is the activated part of LTM.

Multiple copies of concepts inside the LTKB

ROBIN (Lange & Dyer, 1989a; Lange & Dyer, 1989b; Dyer, 1991; Lange, 1992) separates

roles from concepts.  Each concept has an associated node that outputs a particular constant

value (called its signature).  When a role node has the same activation as that of a concept

signature, this concept is bound to the role.  Lange (1992) describes a potential solution

designed to handle multiple instantiation inside ROBIN “in which each frame will have more

than one set of conceptual and binding units.”  This solution involves each concept having

more than one signature and each role more than one activation (see Figure 6.3).
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Figure 6.3
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SHRUTI (Shastri & Ajjanaggadde, 1993; Mani, & Shastri, 1993) is a temporal

synchrony variable binding connectionist model like INFERNET.  It uses node-firing

synchrony to bind objects to their roles.  Multiple instantiation is achieved by the use of a

bounded (usually 3) set of copies or banks of predicates and their argument slots. Activation

is directed to an uninstantiated copy by means of a switch.   Figure 6.4 shows schematically

how SHRUTI deals with multiple instantiation.   This model makes psychological predictions

about both STM span and multiple instantiation abilities.  SHRUTI predicts that the number

of instantiations will be limited and that the time required for doing multiple instantiation will

be proportional to the number of predicate banks.  However, it is unclear how this system

could handle a situation in which more instances are needed than copies are available.   This

number 3 is purely arbitrary, it does not follow from internal constraints within the system.

Mani and Shastri (1993) have claimed that this solution is able to handle recursive statements,

but unfortunately, they do not provide a detailed description of exactly how this is done.

Their solution would seem to be difficult to implement in a purely distributed manner.

Shastri and Ajjanagadde (1993) describe a version of SHRUTI in which each concept is

represented by a set of nodes, but the sets cannot be overlapping (i.e. one concept cannot

share a common node with another concept).  Without this feature, producing similarity

effects related to multiple instantiation, would seem problematic.

One difficulty with the solution involving multiple copies inside LTKB is that in SHRUTI

the number of required nodes increases as the square of the number of necessary

instantiations.  Limiting the number of such copies does, indeed, lessen the severity of this

problem but seems arbitrary since it does not follow from a natural constraint.



Chapter 6: Constraints on Multiple Instantiation 117

Figure 6.4
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While some people may feel that no progress has been made on the problem of multiple

instantiation since the early nineties, the following architecture may lead to renewed interest in

this important problem. As we saw in chapter 2, INFERNET is a temporal synchrony

variable binding distributed connectionist model.  It achieves variable binding through

temporal synchrony of node firing.  In short, when one node fires in synchrony with

another, they are temporarily bound together. It has a limited STM span and the content of

STM is maintained by oscillations.  In INFERNET, nodes pertaining to a doubly instantiated

object will support two oscillations while those singly instantiated will support one

oscillation.  This makes doubly instantiated object nodes fire twice while singly instantiated

fire once.  This means that each new instance will occupy a new place in STM to avoid

crosstalk.  This solution has been compared, in chapter 2, to the neural phenomenon of

bifurcation by period doubling.  The number of instantiations that INFERNET can support is

limited to 2 or 3 by STM storage capacity and by the range of oscillation frequencies that a

node can support.  One advantage of this constraint is that it is derived from hypothesized

neural mechanisms instead of being arbitrarily chosen.  The ability to treat a greater number

of instantiations will be explained in section 6.3  One current limitation of this solution, is its

inability to treat embedded roles required for recursive inferencing.  This problem will be

discussed in chapter 8.  INFERNET uses distributed representations but does not require two

separate systems, one for STM and the other for LTM.  In addition, it does not make use of

redundant copies of concepts inside LTM.
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6.2 Double instantiations

6 . 2 . 1 INFERNET’s ability to handle double instantiations

Relational reasoning studies have explored how people reason with asymmetrical predicates

like bigger than, taller than, before, after etc.  This study will explore asymmetrical

relations that, when doubly instantiated, can be symmetrical.  For example: from “John loves

Louise and Louise loves John” one can infer symmetry and assert that “John and Louise love

each other”, from “John loves Louise and Louise loves Gary” one can infer asymmetry and

assert that “John is jealous of Gary”.  This kind of reasoning necessarily involves double

instantiation.  The capacity of INFERNET to do double instantiation will first be explored,

then its performance will be compared to human data.

INFERNET LTM

INFERNET has a Long Term Knowledge Base that is used for encoding premises and

answering queries.  Figure 6.5 shows the knowledge necessary to make inferences about

love and jealousy.  Arrows represent connections; they are labeled with numbers that indicate

the time required to propagate activation.  Specifically, in this example, a delay of 30ms ∆tγ

corresponds to the lag between two spikes of a node oscillating at 33Hz.  This delay ensures

that these concept-node spikes will synchronize after 30ms. INFERNET also implements

AND-gates, which require all inputs to reach the target at the same time.  Similarly,

XOR-gates are only on when one of the inputs is active (see section 2.6).

Figure 6.5
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The knowledge encoded, as shown in Figure 6.5, can correctly answer the query  “Who

loves each other?” and “Who is jealous of whom?” for all possible combination of two

premises.  In short, the connections represent the following facts: People’s love is

reciprocated if one is a woman, who is both lovee and lover, and the other is a man who is

also both lovee and lover;  a “jealouser” is a lover whose love is not reciprocated and the

person whom she/he loves, loves someone else;  a “jealousee”, (the person of whom the

“jealouser” is jealous) is the person who is the lovee of someone who is loved by someone

else.

Figure 6.6
A. Idealized firing of

nodes following
“John loves Louise

and Louise loves
John”.  B. Idealized

firing of nodes
following “John

loves Louise and
Louise loves Gary.
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Specifically and ideally, the connections depicted in Figure 6.5 will produce node firing

as shown in Figure 6.6 A and B.  The input “John loves Louise and Louise loves John” in

Figure 6.6A causes the firing of “love”, “John”, “Louise”, “love”, “Louise” and “John”

nodes in a single cycle defined by ∆tγ .  All node fire twice in each cycle, they; are instantiated

twice.  The nodes corresponding to “love” will enable nodes corresponding to “lover” and

nodes corresponding to “lovee” to fire.  The “John” nodes provoke the firing of “man” nodes

and “Louise” nodes, those of “woman”.  “John” nodes will fire successively in synchrony

with “lover” and “lovee” nodes and connection strengths between them will increase.  Shortly

thereafter, the firing of “John” nodes will be sufficient to provoke the firing of both “lover”

and “lovee” nodes.  The same process will happen between “Louise” “lover” and “lovee”

nodes.  Thus the “lover” and “lovee” nodes will fire 4 times in a cycle.  This is an idealized

view since refractory period of nodes will prevent some of the nodes firing.  From the

synchrony of “lover”, “lovee” and “man” nodes firing, the AND-gate 1 will open and “X”

nodes will fire in synchrony with “John” nodes and their connection strengths will increase.

Similarly, from the synchrony of “lover”, “lovee” and “woman” nodes firing, the AND-gate

2 will open and “Y” nodes will fire in synchrony with “Louise” nodes and their connection

strengths will increase.

 The input “John loves Louise and Louise loves Gary” in Figure 6.6B provokes

successively the firing of “love”, “John”, “Louise”, “love”, “Louise” and “Gary” nodes in a

single cycle defined by ∆tγ .  “Louise” and “love” nodes fire twice in a single cycle; they are

instantiated twice.  The “love” nodes will enable “lover” and “lovee” nodes to fire.  The

“John” and “Gary” nodes cause the firing of “man” nodes, and “Louise” nodes, those of

“woman”.  “John” nodes will fire in synchrony with “lover” nodes and connection strengths

between them will increase.  “Gary” nodes will fire in synchrony with “lovee” nodes and

connection strengths between them will increase.  “Louise” nodes will fire successively in

synchrony with “lover” and “lovee” nodes and connection strengths between them will

increase.  The firing of “Louise” nodes will then be sufficient to cause the firing of both

“lover” and “lovee” nodes.  Thus “lover” and “lovee” nodes will fire 3 times in one cycle.

From the synchrony of “lover”, “lovee” and “woman” nodes firing the AND-gate 2 will open

and “Y” nodes will fire in synchrony with “Louise” nodes and their connection strengths will

increase.  However, AND-gate 1 will never open and “X” nodes will not fire.  This state

enables the opening of XOR-gate 1 and XOR-gate 3.  From the combined effect of the

opening of XOR-gate 1 and the firing of “lover” nodes, AND-gate 4 opens and “jealouser”

nodes will fire in synchrony with “John” nodes.  Their connection strengths increase.  From

the firing of “Man” nodes asynchonously with “woman” nodes the XOR-gate 2 opens.  From

the conjunction of XOR-gate 2 and 3 opening and “lovee” nodes firing, the AND-gate 5

opens and “jealousee” nodes begin to fire in synchrony with “Gary” nodes.  Their connection

strengths increase.
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Hypothesis

Due to node firing “fatigue”, the “John”, Louise” and “Gary” nodes stop firing before “X”,

“Y”, “jealouser” and “jealousee” nodes.  The number of overlapping synchronies will

determine how fast bindings are learned.  Comparing Figure 6.6 A and B, one can see that

there is less overlapping of “jealouser” and “jealousee” with their respecting instances than

with  “X” and “Y” and their instances.  Subsequently, it will take more time for correct

binding to occur in a jealousy context than in a reciprocal context.

Finding reciprocal love when the input contains symmetry (e.g. “John loves Louise and

Louise loves John”) necessitates AND-gate 1 and 2.  Finding who is jealous of whom when

the input contains a jealous content (e.g. “John loves Louise and Louise loves Gary.”)

requires for finding the jealous person, AND-gate 1 or 2, XOR-gate 1 and AND-gate 4, and

for finding the “jealousee”, AND-gate 1 or 2, XOR-gate 2, XOR-gate 3 and AND-gate 5.

Since the probability of error increases as the number of steps increases, finding “jealouser”

and “jealousee” should be more difficult than finding reciprocal love.  When there is no

conclusion (e.g. finding who is jealous of whom when the input contains a symmetry or

finding reciprocal love when the input contains a jealousy content), no gate is required so the

response should be easy.

Design

The design of the INFERNET simulation has 1 between-subjects and 1 within-subjects

variable.  The between-subjects variable manipulates the symmetry.  The within-subjects

variable is the 2 questions asked to INFERNET (“Who loves each other?” and “Who is

jealous of whom?”).

Material

Two statements were constructed. They differ according to their amount of symmetry or

asymmetry.  The first statement “John loves Louise and Louise loves John” is assigned to

the “reciprocal context” group.  The second statement, “John loves Louise and Louise loves

Gary”,  is the “jealousy context” group premise.  Two questions per statement were

constructed.  The question “Who loves each other?” will be called the Reciprocal question.

The question “Who is jealous of whom?” will be called the Jealousy question.
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Procedure and parameters

Each symbol in the experiment is composed of 12 nodes connected each other with a delay of

∆tγ .  In the learning phase, the statement is presented to INFERNET by making

corresponding nodes fire in a particular order (Figure 6.7A, C).  This input is repeated 10

times, which corresponds to the number of gamma cycles in a burst.  The question is then

presented to the system (Figure 6.7B, D) between each theta cycles.  The question for

reciprocal context will be the reciprocal question, for the jealousy context, it will be the

jealousy question.

Figure 6.7
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The monitoring of the system response will be used to evaluate reaction time as explained

in section 2.8.  This process is repeated 10 times (theta wave).  Every 1 ms interval, the

nodes that are firing are recorded.  The question phase follows.  In this phase, the question is

presented in input  (Figure 6.7B, D).  The reaction of the network is recorded in a file.  The

network reaction to the second question is recorded in the same manner.  These data files will

be used to calculate the proportion of correct INFERNET responses to the two questions.

Results

When the network has learned the bindings, it will be able to answer the questions correctly.

Figure 6.8A shows object node firing time following the question “Who loves each other?”
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for the “reciprocal context” group.  “Love_each_other?” nodes fire as input and begin to

oscillate.  Activation is propagated to “X” and to “Y” which begin to oscillate in their own

phase.  “X” excites “John” whose nodes begin to fire in synchrony.  “Y” excites “Louise”

whose nodes fire in synchrony.

Figure 6.8
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Figure 6.8B shows object node firing time following the question “Jealous?” for the

“jealousy context” group.  “Jealous?” nodes fire as input and begin to oscillate.  Activation is

propagated to “jealouser” and to “jealousee” which begin to oscillate in their own phase.

“Jealouser” excites “John” whose nodes begin to fire in synchrony.  “Jealousee” excites

“Gary” whose nodes fire in synchrony.

The performance of INFERNET was measured as described in section 2.8.  The

frequency of correct inferences is reported in Table 6.1.  INFERNET was run 30 times on

each of the contexts (“reciprocal” and “jealousy”).  The overall performance of INFERNET is

quite good, except, as predicted, for the jealousy question in the jealousy context.

Table 6.1
INFERNET

frequencies of
correct responses

Reciprocal context Jealousy context
Reciprocal question 30 29
Jealousy question 28 16

According to a log-linear analysis, reported in Table 6.2, there is a significant difference

between the two contexts (there are more correct inferences in the reciprocal context).  There
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is also a significant difference between the two questions (there are more correct inferences

for the reciprocal question).  Finally, there is no interaction effect.

Table 6.2
Log-linear analysis

of INFERNET
response

frequencies

Effect DF G2 p
Independence 3 32.9947 .0000003

Context 1 14.68401 .0001271
Question 1 19.93984 .000008

Context*Question 1 .1578528 .6911438

The best fitting model is: Context * Response + Question  * Response G2(2)=1.944862

p=.3781738

Table 6.3 reports mean (and SD) reaction times for both groups on the reciprocal question

only for the reciprocal context and the jealousy question only in the jealousy context.  Here

again, as expected, the jealousy question in the jealousy context is answered more slowly.

The reaction times for the jealousy question in the reciprocal context and the reciprocal

question in the jealousy context were not measured since INFERNET’s response is nothing.

Evaluating reaction times for these responses necessitates arbitrarily fixing a threshold which

would indicate after how much silence will the correct answer be considered to be nothing.

Table 6.3
INFERNET reaction

times

Reciprocal context Jealousy context
Means SD means SD

Reciprocal question 3692 429 - -
Jealousy question - - 5283 2219

The difference between reaction times was tested by an ANOVA.  Variables did not fit the

normal distribution and variances were not homogeneous.  No transformation allowed the

assumptions to be met.  The Welch procedure as defined in Howell (1987) was used.  Table

6.4 shows the results.

Table 6.4
Welch procedure

test for the analysis
of INFERNET

reaction times

Effect DF F p
context 1,31 14.86066 .0005458

The difference is significant.  As expected, it takes more time to answer the jealousy

question in the jealousy context than to answer the reciprocal question in the reciprocal

context.

This experiment showed that INFERNET can deal with double instantiations.  It also

shows that INFERNET is sensitive to the length of the reasoning chain.
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6 . 2 . 2 Experiment 4: Human abilities to treat double instantiation

The following experiment will test the same task on humans, it will provide a basis for

evaluating INFERNET.

Participants and design

The experiment has a 1 between-subjects, 1 within-subjects design. Sixty participants

received one of the two context premises.  Both the question and premises were randomly

chosen.  The conditions differed according to symmetry of the expressed relationship.  The

30 participants in each group were undergraduate psychology majors, 20 females and 10

males in each group, mean age: 21.73 and 21.6, (SD were 2.45, 2.19) respectively.

Material

Two relational statements were constructed for the two groups, manipulating relation

symmetries.  For the non symmetrical group “John loves Louise” and “Louise loves Gray”

(jealousy context), for the “symmetrical group”: “John loves Louise” and “Louise loves

John” (reciprocal context).  Two questions were constructed: “Whose love is reciprocated?”

and “Who is jealous of whom?”

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  The major premise

appeared on the screen.  Participants were asked to read it and to indicate when they had

understood it.  The major premise stayed on the screen during the entire experiment.

Questions appeared on the screen, one at the time and in random order. Participants had to

answer each question.  The computer recorded the time required for them to respond.  The

experimenter recorded the response.  Before presenting the experimental material, participants

received training exercises with the same procedure, but with an arithmetic content.  The

refreshing frequency of the computer monitor was 75 Hz so the timing precision is about 13

ms.  In the program written for the experiment, all processor interrupts were blocked to be

sure that no other time-shared process interfered with timing measurements.

Results

Frequencies of correct responses are displayed in Table 6.5.  As the reader can see, the less

well answered question is the jealousy question in the jealousy context.
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Table 6.5
Humans’

frequencies of
sound responses

Reciprocal context Jealousy context
Reciprocal question 30 26
Jealousy question 25 21

Are there any significant differences?  Table 6.6 displays log-linear results.  There is a

significant difference between the two contexts and the two questions.  There are more

correct inferences in the reciprocal context and more correct inferences for the reciprocal

question.  Finally the interaction is not significant.

Table 6.6
Log-linear analysis

of humans’
response

frequencies

Effect DF G2 p
Independence 3 14.20393 .0026439

Context 1 4.559318 .0327401
Question 1 7.11408 .0076481

Context*Question 1 2.778773 .0955311

The best fitting model is: Context * Response + Question * Response:

G2(2)=3.027266 p=.2201246.

Table 6.7 reports mean (and SD) reaction times for both groups on both questions.  The

reciprocal question in the reciprocal context is answered more rapidly than other questions.

Table 6.7
Humans’ means and

SD reaction times

Reciprocal context Jealousy context
Means SD means SD

Reciprocal question 3880 2216 7643 4692
Jealousy question 5607 2778 6557 3761

Data were analyzed by an ANOVA with 1 between-subjects variable (context) and 1

repeated measures variable (question) ANOVA.  Variables did not fit the normal distribution

and variances and covariances were not homogeneous.  After transforming data into speed

(inverse transformation), homogeneity of covariance assumption was met. Normality

assumptions were also met.  There are only two levels in the within-subjects factor, so the

sphericity and compound symmetry assumptions do not apply.  ANOVA results are

displayed in Table 6.8.

Table 6.8
ANOVA on humans’

reaction times

Effect DF F p
Context 1,58 11.06482 .0015307
Question 1,58 5.14168 .0271001

Context*Question 1,58 12.35669 .00086
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The results shown in Table 6.8 indicate an effect of context, an effect of question and an

interaction effect.  Symmetrical relations induce faster responses.  The reciprocal questions

are answered faster.  But the interaction indicates that, within the same context, questions

matching the context are answered faster than questions that do not match the context and

whose response is “nothing”.

6 . 2 . 3 Comparison between simulator and human data

Figure 6.9 compares the proportion of correct responses between INFERNET simulator and

human data.  These proportions appear to be similar but a statistical measure is necessary.

Figure 6.9
Comparison

between human and
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correctness
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In Table 6.9, are displayed the statistical analysis concerning frequencies of correct

responses.  The Log-linear analysis was performed to test the differences between

INFERNET and human on response correctness.  The table shows that no effect contrasting

INFERNET and human (group) is significant.

Table 6.9
Log-linear analysis

of humans vs.
INFERNET response

frequencies

Effect DF G2 p
Independence 7 29.99081 .0000958

Group 1 .039261 .8429325
Group*Question 1 3.651286 .0560259
Group*Context 1 .753362 .3854138

Group*Context*Question 1 .0000018 .9989331

Figure 6.10 displays the comparison between INFERNET simulator and human reaction

times.  Reaction times appear to be longer for humans, especially for jealousy context group.

The reaction times were analyzed by an ANOVA with 2 between factors (context and

contrast INFERNET-humans, called “group”).  Variables did not fit the normal distribution

and variances were not homogeneous across groups. Since no transformation met
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assumptions, the Brown and Forsythe (1974) procedure for multi-way ANOVA was used.

Results are displayed in Table 6.10.

Figure 6.10
Comparison
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Infernet reaction
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Table 6.10
ANOVA on humans

vs. INFERNET
reaction times using

the Brown &
Forsythe procedure:

f=68.1559

Effect DF DFcorr F p
Group 1,116 1,68 2.65476 .1078646

Context 1,116 1,68 22.61689 .0000107
Group*Context 1,116 1,68 1.46408 .2304716

As Table 6.10 shows, there is no significant difference between INFERNET and human

data. There is no effect of group nor group*context interaction .

Discussion

INFERNET, like humans, can deal effectively with double instantiation.  Performance

decreases as the length of the reasoning chain increases.  As a result, these empirical data

showed, as INFERNET predicted, that dealing with symmetries is easier than dealing with

asymmetries.  Within the same context, questions matching the context are answered faster

than questions that do not match the context and whose response is “nothing”.  However,

even if a non matching question and context takes more time, people still find a correct

response.

6.3 More than 2 instantiations

6 . 3 . 1 INFERNET ability to handle more than two instantiations

The preceding experiment showed that INFERNET is able to handle double instantiations.

This experiment will examine how INFERNET can deal with more than two instances.  It

will also show how the number of instantiations can impair INFERNET functioning.

To encode more than 2 instances, INFERNET takes instances 2 by 2, tries to find a

chunk and take another pair of instances.  For example, if there are 4 premises like: “John
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loves Louise” A, “Gary loves Helen” B, “Louise loves John” C, and “Helen loves Gary” D.

INFERNET examines these combinations: AB, AC, AD, BC, BD, and CD.  From the

combinations AC and BD it finds reciprocal loves.  INFERNET combines instances 2 by 2 in

a random order and as soon as it finds a chunk, it tries to maintain it in memory.  When it has

evaluated all the combinations, it has a chance that the two chunks are maintained.  When

queried, INFERNET uses the chunks to answer.

In this experiment, the task will be to find who are the happy persons from four premises

which involve 1, 2, 4 instances combined with 0, 1, 2 symmetries.

INFERNET LTM

The INFERNET LTM (Figure 6.11) is slightly modified compared to that one described in

section 6.2.1 in order to answer the “Who are happy?” question.  “Happy” nodes will fire

whenever “X” and “Y” fires with a 15 ms delay (sign of reciprocal love) and if “jealouser”

nodes do not fire.  In that case, “happy” will be bound to the two persons involved in the

statement.  Connection weights will increase, thereafter, whenever “happy” fires, these two

persons’ nodes will fire.  The set of inhibitory connections from “happy” nodes prevents

spurious representations from arising from the period doubling of people nodes which have

been found to be happy.  It also enables the connection linking man, woman, lover and lovee

to the previous fillers to decrease in the recapitulating phase.

Figure 6.11
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To provide an idea of how the system is functioning, 4 pairs of premises will be

introduced into the system by hand.  The next four figures will show how the system reacts

and integrates these premises.  The 4 pairs of premises will be A: “John loves Louise, Helen

loves Gary”, B: “John loves Louise, Louise loves John”, C: “Peter loves Barbara, Barbara

loves Allan” and D: “Gary loves Helen, Helen loves Gary”.  B and D should enable “happy”

to bind to the objects, C should enable “jealousy” and A should not modify anything.

Figure 6.12
A. Binding phase

encoding “John
loves Louise” and

“Helen loves Gary”.
B. Recapitulatory

phase following
binding phase,

nothing binds to
“happy”, “jealouser”

and “jealousee”.
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Figure 6.12A illustrates how INFERNET deals with the first premise “John loves

Louise, Helen loves Gary”, “John” and “Helen” correctly bind to “lover” and “Louise” and

“Gary” to “lovee”.  Since none of them is both bound to “lover” and “lovee” the reasoning

chain is blocked.  Figure 6.12B shows how INFERNET recapitulates what has been encoded
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in the binding learning phase.  During this phase, forgetting occurs, the connection weights

between the people nodes and “lovee” and “lover” nodes decrease to be ready for the next

pair of premises.

Figure 6.13A illustrates how INFERNET deals with the second premise “John loves

Louise” and “Louise loves John”, “John” and “Louise” both bind to “lover” and “lovee”.

Since AND-gates 1 and 2 open, “X” and “Y” begin to oscillate which cause the opening of

AND-gate 3. “Happy” begins to oscillate in synchrony with “John” and “Louise”.  Figure

6.13B shows how INFERNET recapitulates what has been encoded in the binding learning

phase.  During this phase, forgetting occurs, the connection weights between the people

nodes and “lovee” and “lover” nodes decrease to be ready for the next pair of premises.

Since links between “happy” and “John” and “Louise” are used, they are maintained.

Figure 6.13
A. Binding phase

encoding “John
loves Louise” and

“Louise loves John”.
B. Recapitulatory

phase following
binding phase,

“John” and “Louise”
bind to “happy”.
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Figure 6.14A illustrates how INFERNET deals with the third premise “Peter loves

Barbara” and “Barbara loves Allan”, “Peter” binds to “lover”, “Allan” binds to “lovee” and

“Barbara “ binds to both “lover” and “lovee”.  Only AND-gate 2 opens, and “Y” begins to



132 Chapter 6: Constraints on Multiple Instantiation

oscillate.  Since “X” does not oscillate, XOR-gates 1 and 3 open, and since “woman” and

“man” are not in synchrony XOR-gate 2 opens.  AND-gate 4 will open and “lover” and

“jealouser” will oscillate in synchrony with “Peter” while AND-gate 5 opens and “jealousee”

nodes fires in synchrony with “Allan”.  Figure 6.14B shows how INFERNET recapitulates

what has been encoded in the binding-learning phase.  Note that INFERNET did not forget

what it learned in previous premises.  “Happy” is still firing in synchrony with “John” and

“Louise”.  During this phase, forgetting occurs, the connection weights between the people

nodes and “lovee” and “lover” nodes decrease to be ready for the next pair of premises.

Since links from and to “happy”, from and to “jealouser” and from and to “jealousee” are

used, they are maintained.

Figure 6.14
A. Binding phase
encoding “Peter

loves Barbara” and
“Barbara loves

Allan”.  B.
Recapitulatory

phase following
binding phase,

“John” and “Louise”
still bind to “happy”,

“Peter” binds to
“jealouser” and
“Allan” binds to

“jealousee”.
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Figure 6.15A illustrates how INFERNET deals with the last premise “Gary loves Helen”

and “Helen loves Gary”, “Gary” and “Helen” bind both to “lover” and “lovee”.  Since AND-

gates 1 and 2 open, “X” and “Y” begin to oscillate, which causes the opening of AND-gate 3.

“Happy” begins to oscillate in synchrony with “Gary” and “Helen”.  Figure 6.15B shows

how INFERNET recapitulates what has been encoded since the beginning.  INFERNET did

not forget what it learned in previous premises.  “Happy” is still firing in synchrony with

“John” and “Louise”, “Peter” is still firing in synchrony with “jealouser” and “Allan” with

“jealousee”.  Moreover, “Gary” and “Helen” fire in synchrony with “happy”.  This

constitutes INFERNET’s final answer.

Figure 6.15
A. Binding phase

encoding “Gary
loves Helen” and

“Helen loves Gary”.
B. Recapitulatory

phase following
binding phase,

“John” and “Louise”
still bind to “happy”,
“Helen”, “Gary” bind

to “happy”, “Peter”
still binds to

“jealouser” and
“Allan” still binds to

“jealousee”.
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Hypothesis

In the previous section, the description is an idealized one.  Some of the nodes will not fire

because of the node’s refractory period.  consequently, the behavior of the system will be

more erratic.  Due to the number of gates required, finding happy people should be easier

than finding jealouser and jealousee.  Also the LTM has been encoded for increasing the

chance of finding somebody happy, if nothing indicates that they are not happy (jealouser).

The system performance will also be a function of the number of combinations of premises.

The greater the number of pairs of premises, the greater the chance of forgetting a conclusion.

But also the more pairs, the more time it will take to arrive at the final conclusion.  As a

result, there should be an effect of the number of instances in the premises, and an effect of

the number of symmetries.  The greater the number of instances, the lower the performance,

the fewer symmetries, the lower the performance.

Design

The design of INFERNET experiment has 2 between-subjects variables.  The between-

subjects variables are symmetry and number of instances.  The dependent variable is the

answer to the “Who is happy?” question.

Material

Six situations involving 4 statements were constructed. They differ according to the number

of symmetries and the number of instances that are involved in them.  The first situation

involves 1 instance and no symmetry: “John loves Louise”, “P (a, b)”, “Q (c, d)” and “R (e,

f)”, which are arbitrary predicates of the same arity; the second situation involves 2 instances

and no symmetry: “John loves Louise”, “Louise loves Gary”, “P (a, b)”, “Q (c, d)”; the third

situation includes 2 instances and 1 symmetry: “John loves Louise”, “Louise loves John”,

“P (a, b)”, “Q (c, d)”; the fourth situation involves 4 instances and no symmetry: “John

loves Louise”, “Louise loves Gary”, “Gary loves Helen”, “Helen loves John”; the fifth

situation includes 4 instances and 1 symmetry: “John loves Louise”, “Louise loves John”,

“Gary loves Helen”, “Helen loves John”; the last situation involves 4 instances and 2

symmetries: “John loves Louise”, “Louise loves John”, “Gary loves Helen”, “Helen loves

Gary”.  The question “Who is happy?” is presented after each encoding of pairs of premises.

Procedure and parameters

Each symbol in the experiment is composed of 12 nodes connected to each other with a delay

of ∆tγ .  In the learning phase, a random pair of statements is presented to INFERNET.  This

input is repeated 10 times, which corresponds to the number of gamma cycles in a burst.  The
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question is presented to the system by making “happy” nodes and “jealous” node fire this is

the recapitulatory phase.  The following pairs of statements are successively presented in a

random order alternating with a recapitulatory phase.  For each situation, six pairs of

combinations are presented in a random order.  The evolution of responses during the

binding-learning phase will be used to evaluate reaction time.  The last recapitulatory phase

will be used to evaluate the frequency of correct responses.

Results

The performance of INFERNET was measured as described in section 2.8.  The

frequency of correct inferences is an addition of different responses.  In the various situations

there is more than one correct response, so it was decided to consider a response correct if it

was not incorrect.

In the first situation: “John loves Louise”, “P (a, b)”, “Q (c, d)” and “R (e, f)” since

nothing is said about the love of “Louise”, it was equally considered correct stating that

nobody, “Louise” or “John” were happy.

In the second situation: “John loves Louise”, “Louise loves Gary”, “P (a, b)”, “Q (c, d)”,

correct responses are “nobody”, “Louise” and “Gary”.

In the third situation: “John loves Louise”, “Louise loves John”, “P (a, b)”, “Q (c, d)”,

correct responses are “John and Louise”, “John”, and “Louise”.

In the fourth situation: “John loves Louise”, “Louise loves Gary”, “Gary loves Helen”,

“Helen loves John”, the only correct response is “nobody”.

In the fifth situation: “John loves Louise”, “Louise loves John”, “Gary loves Helen”,

“Helen loves John”, the correct responses are “John and Louise”, “John”, and “Louise”.

In the last situation: “John loves Louise”, “Louise loves John”, “Gary loves Helen”,

“Helen loves Gary”, the correct responses are whatever combination of “John”, “Louise”,

Gary”, and “Helen”.

The frequencies of correct responses are reported in Table 6.11.  INFERNET was run 20

times on each of the situations.  The overall performance of INFERNET is quite good.

Table 6.11
Count  of sound

responses in
INFERNET

1 instance 2 instances 4 instances
no Symmetry 20 16 20
1 Symmetry - 19 20

2 Symmetries - - 20
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Log-linear analysis was performed (see Table 6.12) with each cell increased by .00001

otherwise Log-linear cannot be computed (too many 0’s).  The G2 are overestimated because

of the large number of low frequency cells.  Remember that in log-linear analysis all response

categories are contrasted.  In this study there are very few incorrect responses.  Results with

Yates’ correction are provided.  In this design there are 6 empty cells which have been

counted as structural zeros.  For the test of independence, the number of DF are: (number of

cells - 1)  - (number of modalities in symmetry + number of modalities in instances +

number of modalities in response - number of variables) - number of empty cells = (18-

1) - (3 + 3 +2 - 3) - 6 = 6.

Table 6.12
Log linear analysis

on INFERNET
response

frequencies

DF G2 p Corrected G2 p

Independence 6 13.61160 .0342889 8.058002 .2339216
Symmetry 2 2.184897 .3353943 1.514097 .4690489
Instance 2 10.78673 .0045467 6.296063 .0429366

Symmetry*Instance 4 .0000039 .9999999 .3059293 .9894282

Log-linear results are ambiguous since corrected G2 does not lead to the same conclusion

as normal G2 does.  However, since 4 cells are empirical 0’s and the values of 2 other cells

are very low (1 and 4), we are more prone to believe the corrected G2 and to conclude the

independence.  So, in this case, the number of instances and the number of symmetries does

not influence response correctness.

Reaction times were computed by examining the evolution of binding-learning during the

six pairs of premise combinations.  For each of the six combinations per situation, we looked

for binding to “happy” “jealouser” and “jealousee” and obtained for each situation 6 reaction

times with the procedure described in section 2.8.  These 6 reaction times have been added.

Table 6.13 reports mean (and SD) reaction times for the six situations.  Here, as

expected, reaction times increase as the number of instances increases and as the number of

symmetries decreases.

Table 6.13
INFERNET reaction

times means and
standard deviations

1 instance 2 instances 4 instances
no Symmetry Mean 3093 5442 13680

SD 786 1865 1196
1 Symmetry Mean - 4610 10792

SD - 993 1178
2 Symmetries Mean - - 7804

SD - - 1640

Due to the incomplete design, effects of instances and symmetry were analyzed with type

I sum of squares which express the gain of adding an effect to the model.  Variables did not

fit the normal distribution and variance were not homogeneous across group.  Since no
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transformation met this assumption, the Brown Forsythe procedure has been performed

(f=86.402977).

The effect of interaction was computed by an analysis of variance in which groups “1

instance 0 symmetry” and “4 instances 2 symmetries” were removed.  These group are

removed since interaction could not be evaluated with these groups.  RT did not fit the normal

distribution across groups and variance and covariance were not homogeneous.  Numerous

transformations were tried but none of them makes the variance homogeneous.  The Brown

Forsythe procedure was performed (f=59.1174).

Table 6.14
Effects of the

number of instances
and symmetry on

INFERNET reaction
times

Effect DF DF corr F p
Conjunct effect 4,115 4,86 207.04 2.89 E-43

Instance 2,115 2,86 328.45 5.41 E-41
Symmetry gain 2,115 2,86 85.62 3.46 E-21

Instance*Symmetry 1,76 1,59 11.5948 .0011952

There is a significant effect of the number of instances and the number of symmetries.

There is also a significant interaction effect: There is a greater decrease in reaction time when

adding a symmetry in the 4-instance case than in the 2-instance case.

Post Hoc analysis were evaluated by planned comparisons which is a better procedure for

incomplete designs (Tukey only applies to complete designs).  Within the 2 instances cases,

the presence of 1 symmetry reduces the reaction time with a low significant level: F (1,114)

= 3.926615, p = .0499345.  Within the 4 instances cases, the no-symmetry reaction times are

longer than 1-symmetry F (1,114) = 47.23826, p < .000001 and longer than 2-symmetries F

(1,114) = 195.5868, p < .000001 finally 1 symmetry reaction times are longer than 2

symmetries F (1,114) = 50.58376, p < .000001.  Within the no-symmetry cases, 1-instance

reaction times are faster than 2-instances F (1,114) = 31.26194, p < .000001, 1-instance

reaction times are faster than 4-instances F (1,114) = 635.0321, p < .000001, and 2-

instances are faster than 4-instances F (1,114) = 384.4974, p < .000001.  Within the 1-

symmetry cases, 2-instances reaction times are faster than 4-instances F (1,114) = 216.595,

p < .000001.

In conclusion, INFERNET is sensitive to both the number of instances and the presence

of symmetry.

6 . 3 . 2 Experiment 5: Human ability to handle more than two instantiations

The following experiment will test the same task on humans, it will provide a basis for

evaluating INFERNET adequacy.
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Participants and design

The experiment has a 2-way between-subjects design. 120 participants received one of the six

sets of four randomly chosen premises and had to answer one question.  The conditions

differed according to the number of symmetries of the relationship involved and the number

of instances.  The 20 participants in each group were undergraduate psychology major,  83

females (13, 14, 12, 15, 14, 15 in the 6 groups), and 37 males (7, 6, 8, 5, 6, 5 in the 6

groups).  Mean age was 21.86 (respectively 22.05  22.55  22.10  21.05  21.9  21.5) and SD

was 2.22.

Material

Six sets of 4 relational statements were constructed for the six groups, manipulating the

relational symmetries and instantiations.  They are displayed in Table 6.15. One question was

presented to the participants: “Who is happy about love?”

Table 6.15
Summary of the

design and material
of experiment 6

1 instance 2 instances 4 instances

no symmetry Peter is in love with Mary
The cat ate the steak

The car crashed into the wall
The swallow came in the

spring

Peter is in love with Mary
The cat ate the steak

Barbara is in love with Peter
The car crashed into the wall

Peter is in love with Mary
Barbara is in love with Peter
Allan is in love with Barbara

Mary is in love with Allan

1 symmetry Peter is in love with Barbara
The cat ate the steak

Barbara is in love with Peter
The car crashed into the wall

Peter is in love with Mary
Barbara is in love with Allan

Allan is in love with Mary
Mary is in love with Peter

2 symmetries Allan is in love with Mary
Mary is in love with Allan

Peter is in love with Barbara
Barbara is in love with Peter

In French, each major premises involved the same number of words.  To verify further

that the six groups of stimuli were comparable, except for symmetries and instances, a lexical

decision task were performed on the words used in the 6 groups (only differing words were

tested).  The participants were not the same, but also undergraduate psychology major (14

females, 6 males) mean age: 21.8 SD: 2.09.  The mean (and SD) reaction times are displayed

in Table 6.16.

Table 6.16
Means and SD

reaction time by
word present in each

stimulus

1 instance 2 instances 4 instances
no Symmetry Mean 751.8066 743.3882 720.3500

SD 183.0917 153.3973 116.9653
1 Symmetry Mean - 744.1147 719.5781

SD - 156.6683 120.6780
2 Symmetries Mean - - 720.3500

SD - - 116.9653
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A one-way within-subjects ANOVA (6 levels) on mean word latency for each set of

premises was performed.  Variances were homogeneous.  Sphericity was not met so the Box

procedure was performed, the correction factor is ε̂ =.242456.

Table 6.17 shows the ANOVA results.  As one can see, there is no significant difference

between the six levels regarding for the mean reaction time to decide if strings were words or

not.  We are more confident now that the two groups stimuli are comparable.

Table 6.17
Anova on word

latency

Effect DF F p
Repeated measure 1,23 1.101902 .304754

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  The major premises

appeared on the screen.  Participants were asked to read them and to indicate when they had

understood it.  The major premises stayed on the screen during the entire experiment.

Questions appeared on the screen.  Participants had to answer them.  The computer recorded

the time required for them to respond.  The experimenter recorded the response.  Before

presenting the experimental material, participants received training exercises with the same

procedure, but with an arithmetic content.  The refreshing frequency of the computer monitor

was 75 Hz so the timing precision was about 13 ms.  In the program written for the

experiment, we took care to block all processor interrupts to be sure that no other time shared

process interfered with timing measurements.

Results

Frequencies of responses are displayed in Table 6.18.  As the reader can see there is not

much difference between group.

Table 6.18
Humans’

frequencies of
sound responses

1 instance 2 instances 4 instances
no Symmetry 20 17 17
1 Symmetry - 16 18

2 Symmetries - - 20

Are there any significant differences?  Table 6.19 displays log-linear results.  Since there

were many low frequency cells a Yates’ correction was performed.   In this design there are 6

empty cells which have been counted as structural zeros.  For the test of independence the

number of DF are: (number of cells - 1)  - (number of modalities in symmetry + number of

modalities in instances + number of modalities in response - number of variables) -

number of empty cells = (18- 1) - (3 + 3 +2 - 3) - 6 = 6.  Even without the correction
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independence is not rejected, which means that there is no significant difference between

groups.

Table 6.19
Log-linear analysis
of human response

frequencies

DF G2 p G2 corrected p

Independence 6 11.18376 .0828605 10.04552 .2618898

Table 6.20 reports mean (and SD) reaction times for the six situations.  Here, as predicted

by INFERNET, the reaction times increase as the number of instances increases and as the

number of symmetries decreases.

Table 6.20
Humans reaction
times means and

standard deviations

1 instance 2 instances 4 instances
no Symmetry Mean 4708 5756 12759

SD 3066 3303 11034
1 Symmetry Mean - 5484 9878

SD - 3597 6818
2 Symmetries Mean - - 5044

SD - - 3130

Due to the incomplete design, effects of instances and symmetry were analyzed with type

I sum of squares which express the gain of adding the effect to the model.  Variables did not

fit the normal distribution and variances were not homogeneous.  After inverse

transformation (1/x), variances were homogeneous across groups.  Variables were close to a

normal distribution.

The effect of interaction was computed by an analysis of variance in which groups “1-

instance no-symmetry” and “4-instances 2-symmetries” were removed.  These group are

removed since interaction could not be evaluated with these groups.  After an inverse

transformation (1/x),  variances  were homogeneous across groups.

Table 6.21
Effects of the

number of instances
and symmetry on

human reaction
times

Effect DF F p
Conjunct effect 4,110 6.80 .0000618

Instance 2,110 6.13 .0028926
Symmetry gain 2,110 7.47 .0008748

Instance*Symmetry 1,72 .06453 .8001953

Similarily to INFERNET, there is a significant effect of the number of instances and the

number of symmetry, but there is no interaction effect.  Post Hoc analysis were evaluated by

planned comparisons which is a better procedure for incomplete designs (Tukey only applies

to complete designs).  In the 4-instance cases, the no-symmetry reaction times are longer than

for 2-symmetries F (1,109) = 12.24739, p = .000676 and 1-symmetry reaction times are
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longer than 2-symmetries F (1,109) = 8.10988, p = .005263.  In the no-symmetry cases, 1-

instance reaction times are faster than 4-instances F (1,109) = 15.78523, p = .0001277 and

2-instances are faster than 4-instances F (1,109) = 6.383726, p = .0129529.  In the 1-

symmetry cases, 2-instances reaction times are faster than 4-instances F (1,109) = 7.874046,

p = .0059412.

In conclusion, as INFERNET, people are sensitive to both the number of instances and

the presence of symmetry.

6 . 3 . 3 Many instantiations: Comparison between simulator and humans

Figure 6.16 compares the proportion of correct responses between the INFERNET simulator

and human data.  These proportions are high in both group.

Figure 6.16
Comparison

between human and
simulator

correctness
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Table 6.22 displays the log-linear analysis.  The Log-linear analysis was performed to

test effect of the contrast INFERNET-human (called group)  on response correctness.

For test of independence the number of DF is: (number of cells - 1)  - (number of

modalities in group + number of modalities in symmetry + number of modalities in

instances + number of modalities in response - number of variables) - number of empty

cells = (36 - 1) - (2 + 3 + 3 + 2 - 4) - 12 = 17.

The G2 are overestimated because of numerous low frequency cells.  G2 with Yates’

correction are provided.

As one can see, there is no significant difference between INFERNET simulator and

human data.
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Table 6.22
Log-linear analysis

of humans and
INFERNET response

frequencies

Effect DF G2 p G2 corrected p
Independence 17 27.98497 .0451141 17.97059 .3907511

G*Inst 2 4.789335 .0912030 2.044148 .3598479
G*Sym 2 1.963081 .3747334 1.748373 .4172013

G*Sym*Inst 4 .0000262 .9999999 .5752323 .9657758

Figure 6.17 displays the comparison between INFERNET simulator and human reaction

times.  They are quite similar.

Figure 6.17
Comparison

between INFERNET
and human reaction

times
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Comparisons of reaction times were analysed by an ANOVA with 2 between-subjects

factors (Instances + symmetries, contrast INFERNET-humans).  The grouping of Instance

and symmetry has been done in order to avoid an incomplete design.  The purpose of this

analysis is to compare INFERNET and human reaction times.  The present design is

sufficient to provide an answer.  Reaction times did not fit the normal distribution across

groups and variances were not homogeneous across groups.  No transformation met

homogeneity of variances so the Brown Forsythe procedure was used f=49.9810.  Table

6.23 provides ANOVA results.  As Table 6.23 shows, there is no significant difference

between INFERNET and humans.

Table 6.23
Contrast of the

effects of the
number of instances

and symmetry
between INFERNET

and humans.

Effect DF DF corr F p
Group 1,223 1,50 .29575 .5889760

Instance&Symmetry 5,223 5,50 28.43089 .0000000
Group*Inst&Symm 5,223 5,50 1.36165 .2546157

Discussion

This experiment shows that the more a task requires instantiations the greater the

processing time.  It also shows that people reduce the complexity of processing multiple
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instantiation by a kind of chunking procedure.  We explored the possibility of reducing the

number of instances by detecting symmetries.  The presence of symmetries reduces reaction

times, indicating that somehow the task is facilitated by the presence of symmetries.

6.4 Similarity and multiple instantiation

For a distributed connectionist model, multiple instantiation will also affect related symbols.

Symbols that share properties most likely share something in the neurobiological substrate.

The effect of multiple instantiation should be observable when related symbols are used

together.  The following experiment tests this hypothesis.

6 . 4 . 1 Similarity and Multiple Instantiation INFERNET

One of the key features of distributed connectionist models is that a single symbol is

represented by a large set of nodes, referred to here as a cell assembly.  Moreover, a single

node can participate in different cell assemblies.  In INFERNET, a symbol is represented by

a set of nodes firing in synchrony.  The distributed nature of each symbol implies that closely

related symbols have nodes in common.  If two related symbols are needed simultaneously,

and if they cannot belong to the same window of synchrony, the nodes that they share must

be instantiated twice.  In the present experiment, the number of closely related symbols was

manipulated.  The prediction was that if the number of instantiations of shared properties

increased, a replacement process would be triggered.  This replacement would take time and

this would be reflected in the response times.

To test this prediction, we ran a conditional reasoning experiment comparing two

situations.  In the first situation, there is more similarity between concepts used in the major

premise than in the second situation.

This task of conditional reasoning involves material implication.  People’s inferences use

four types of logical rules: Modus Ponens 
p⊃q, p

q , Modus Tollens 
p⊃q,~q

~p  (correct inferences),

Denying the antecedent 
p≡q,~p

~q  and Affirming the consequent 
p≡q,q

p  (sound only in material

equivalence).  For a more detailed introduction to conditional reasoning, see chapter 4.

INFERNET LTM

The INFERNET LTM that deals with conditional reasoning is the same as the one presented

in chapter 4.  Three predicates have been added to that LTM.  These predicates are encoded as

shown in Figure 6.18.  Each of the two arguments are linked by the predicate.
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Figure 6.18
Predicates used in

the experiment. Cutter Cut_Obj

Nailer Nail_Obj

Cut

Nail

3

7

3

7

Rider Ride_onRide 3

7

Hypothesis

The hypothesis that follows from this INFERNET structure is that the more the objects

involved in the reasoning episode are similar or share nodes, the poorer the overall

performance will be.

Design

The INFERNET experiment has a 1 between-subject variable and 1 within-subjects variable

with 4 levels.  The between-subjects variable manipulate the similarity of symbols.  The

within-subject variable was comprised of 4 questions put to INFERNET (corresponding to

modus ponens, deny of the antecedent, affirmation of the consequent and modus tollens).

Material

Two major premises were constructed. They differ according to the similarity of symbols of

which they are comprised.  The first major premise: “If the lumberjack cuts down the oak

tree, then the carpenter’s helper can nail the boards” involved a set of related symbols.  The

second premise: “If the lumberjack cuts down the oak tree,  then the farmer’s tractor can use

the pathway” uses fewer related symbols.  Each symbol was represented by 12 nodes.  In the

first situation, more symbols making up the question shared nodes than in the second

situation.

Procedure and parameters

Each object in the experiment is composed of 12 nodes connected to each other with a delay

of ∆tγ .  In the learning phase, the major premise is presented to INFERNET by causing the

nodes corresponding to the objects in the premise to fire in a particular order (Figure 6.19A).

This input is repeated 10 times which corresponds to the number of gamma cycles in a burst.

On the left of the figure is indicated the object for the more similar group, on the right those

of the less similar group.  The four questions are then presented to the system (Figure 6.19B,

C, D, E).  The response of the system will be used to evaluate reaction time.  This process is
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repeated 10 times (theta wave).  During every 1 ms interval, the firing nodes are recorded in a

file.  The question phase follows (Figure 6.19B, C, D, E).  This input is presented once

every theta cycle.  The reaction of the network is recorded in a file.  These data files will be

used to calculate the proportion of correct responses by INFERNET.

Figure 6.19
A: Premise encoding

phase input, B:
Modus ponens

question input; C:
Deny of the

antecedent question
input; D: Affirmation

of the consequent
question input; E:

Modus tollens
question input.
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Results

When the network has learned the bindings, it will be able to answer the questions related to

modus ponens, denying of the antecedent, affirmation of the consequent and modus tollens.

The performance of INFERNET was measured as described in section 2.8.  The

frequency of inferences is reported in Table 6.24.  INFERNET was run 20 times on each of

the major premises (similar, less similar).  The overall performance of INFERNET appear to

be similar in both groups.

Table 6.24
INFERNET

frequencies of
stating each

inference

MP DA AC MT
Similar 18 18 18 18

Less similar 20 20 18 18

Is this difference significant?  According to the log-linear analysis reported in Table 6.25,

there is no significant difference between the two group’s performance.  There is no

difference between the different questions.  Finally there is no interaction effect.  The G2

displayed in Table 6.25 are underestimated because data were analysed with a between-

subject design.  The Rasch model could not be applied because of the between-within design.

Statisticians have not yet studied the application of log-linear analysis on this type of design

(Lindsey, personal communication).  The G2 values are probably correct because of many

low frequency cells which overestimate G2.  ANOVA between-within results are also

displayed in Table 6.25.  The sphericity assumption is met.  Variances across groups for the

four repeated measures are all homogeneous.  ANOVA confirms the Log-linear analysis.

Table 6.25
Log-linear analysis

and ANOVA on
INFERNET response

frequencies

DF G2 p F DF p

Independence 7 7.223102 .4060516
Inference 3 1.48052 .6867735 .6551724 3,114 .5813228
Similarity 1 1.48052 .2236932 .7600000 1,38 .3888035

Inference*Similarity 3 4.275273 .2332542 .6551724 3,114 .5813228

Table 6.26 reports mean (and SD) reaction times for both groups on the four questions.

The “similar” group appears to be slower than the other group.

Table 6.26
INFERNET means

and SD reaction
times

MP DA AC MT
Similar Mean 4527.000 4672.500 4393.500 4477.500

SD  53.2225 215.6477 361.7687 362.0828
Less similar Mean 4039.500 4614.000 4260.000 4431.000

SD 493.2649  33.1504 476.5335 396.6956
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Effects are computed by an analysis of variance with 1 between-subject variable

(similarity) and 1 within-subjects variable (inference).  The assumption  of sphericity is a

necessary and sufficient condition for the F to be valid.  Since this assumption is violated the

Box correction is used as described in appendix B ε̂ =0.778328.  The analysis is displayed in

Table 6.27.

Table 6.27
ANOVA on

INFERNET reaction
times

Effect DF DFcorr F p
Similarity 1,38 1,29 12.43043 .0014248
Inference 3,114 2,88  8.59370 .0003898

Similarity*Inference 3,114 2,88  3.55122 .0328704

Table 6.27 indicates a significant effect of similarity, a significant effect of the inference

type and a small interaction effect.  Similarity, which results in multiple instantiation, does

affect INFERNET’s performance, but it seems to affect Modus ponens more than other

inferences.  A Tukey post-hoc test indicates a significant difference p=.00067 between

modus ponens reaction times in “similar” and “less similar” groups.

6 . 4 . 2 Experiment 6: Similarity and Multiple Instantiation for humans

The following experiment will test the same task on humans.  It tests the effect of similarity

on reasoning performance.

Participants and design

The experiment has a 1 between-subjects and 1 within-subjects design with 4 levels. Forty

participants received one of the two randomly chosen major conditional premises and had to

answer four questions selected in a random order.  The 40 participants were undergraduate

psychology majors, 26 females 14 males, (group 1, 8 males 12 females, median 3rd year;

group 2, 6 males 14 females, median 3rd year;).

Material

Two conditional major premises were constructed.  The first contained more related concepts

than the second.  The similar major premise was “If the lumberjack cuts down the oak tree,

the carpenter’s helper can nail the boards” the second involving less similar words was “If the

lumberjack cuts down the oak tree, the farmer’s tractor can use the pathway”.  These two

major premises were respectively attributed to the “similar” and “less similar” group.  Four

minor premises or questions were constructed for each group each corresponding to the four

types of inferences.  They are reported in Table 6.28.
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Table 6.28
The four questions

of each group

Modus Ponens Denying the
Antecedent

Affirming the
Consequent

Modus Tollens

Similar group from the lumberjack
cuts down the oak

tree infer the
carpenter’s helper
can nail the boards

from the lumberjack
did not cut down the

oak tree infer the
carpenter’s helper

cannot nail the boards

from the carpenter’s
helper can nail the
boards infer  the

lumberjack cuts down
the oak tree

from the carpenter’s
helper did not nail

the boards infer the
lumberjack did not

cut down the oak tree
Less similar

group
from the lumberjack

cuts down the oak
tree infer the

farmer’s tractor can
use the pathway

from the lumberjack
did not cut down the

oak tree infer the
farmer’s tractor
cannot use the

pathway

from the farmer’s
tractor can use the
pathway infer  the

lumberjack cuts down
the oak tree

from the farmer’s
tractor did not use the

pathway infer  the
lumberjack did not

cut down the oak tree

(In French, the two major premises involved the same number of words.)  To verify

further that the two group stimuli were comparable excepting for similarity, a lexical decision

task was performed on the words used in the 2 groups (words that differed were tested).  The

participants were undergraduate psychology majors (14 females 6 males) mean age: 21.8 SD:

2.09.  There was one missing value.  The mean (and SD) reaction times are displayed in

Table 6.29.

Table 6.29
Means and SD

reaction time by
word present in each

stimulus

Similar Less similar
Mean 775.5538 756.4038
SD 159.0371 248.5691

A one-way repeated measures ANOVA on mean word latency for each sentence was

performed.  Variances are homogeneous.  There are only two levels in the within-subjects

factor, so the sphericity and compound symmetry assumptions are not taken into account.

Table 6.30 shows the ANOVA results.  As one can see, there is no significant difference

between the two groups for the mean reaction time to decide if strings are words or not.  We

can be confident now that the two groups’ stimuli are comparable.

Table 6.30
Repeated measure

Anova on word
latency

Effect DF F p
Repeated measure 1,19 .3303744 .5721826

Procedure

Each participant was seated approximately 50 cm in front of the monitor.  The major premise

appeared on the screen.  Participants were asked to read it and to indicate when they had

understood it.  The major premise stayed on the screen during the entire experiment.

Questions appeared on the screen, one at the time and in random order.  Participants had to

answer each question.  The computer recorded the time required for them to respond.  The

experimenter recorded the response category.  Before presenting the experimental material,

participants received training exercises with the same procedure, but with an arithmetic

content.  The refreshing frequency of the computer monitor was 75 Hz so the timing
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precision is about 13 ms.  In the program made for the experiment, we took care to block all

processor interrupts to be sure that no other time-shared process interfered with timing

measurements.

Hypothesis

If INFERNET prediction is correct, it should be easier to perform the task when words

involved in the major premise are less similar than when they are similar.  Similar words

should share something in their neurobiological representation.  If these words are to be

distinguished, their common parts must be bound to different things and must be multiply

instantiated.

Results

The frequencies of responses are displayed in Table 6.31.  As the reader can see, there is little

difference between the two groups.

Table 6.31
Count of humans

inferences

MP DA AC MT
Similar 20 19 16 16

Less similar 20 19 19 17

Table 6.32 shows the statistical analysis concerning frequencies of inference.  A Log-

linear analysis was performed to test the effect of similarity  on frequency of inference.  The

G2 values are underestimated because data were analysed with a between-subjects design.

The Rasch model could not be applied because of the between-within design.  Statisticians

have not yet studied the application of log-linear analysis on this type of design (Lindsey,

personal communication).  The G2 are probably correct because of the presence of many low

frequency cells which cause G2 to be overestimated.  Table 6.32 also displays ANOVA

results on 1 between-subjects and 1 within-subjects factor with 4 levels.  The sphericity

assumption was violated so a Box correction (ε̂ =0.7810688) on the number of degrees of

freedom was performed.  Variances for the 4 measures are all homogeneous across groups

with the exception of AC.   According to both analyses there is no effect of similarity or

interaction and there is a significant effect of inference.

Table 6.32
Log-linear analysis

on humans
frequencies of

response

DF G2 p F DF p

Independence 7 14.18649 .0479962
Inference 3 11.90358 .007721 4.897778 3,114 .0030725
Similarity 1 1.344195 .246296  .615385 1,38 .4376307

Inference*Similarity 3 1.014362 .797769 1.013333 3,114 .3895860
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Table 6.33 shows mean (and SD) reaction times for the two groups and the four

questions.  The “similar” group appears to be slower and the reaction times increase from

MP, DA, AC, MT.

Table 6.33
Humans’ means and

SD reaction times

MP DA AC MT
Similar Mean 4395.895 4965.000 5204.474 6521.737

SD 1389.528 2894.142 2053.427 4529.169
Less similar Mean 3468.053 3668.526 3843.210 4964.210

SD 1274.845 1070.974 1486.863 2161.213

Effects are computed by an analysis of variance with 1 between-subjects variable and

(similarity) 1 within-subject variable (inference) with 4 levels.  The sphericity assumption is

violated.  After transformation of reaction times into speed (1/x), this assumption is no longer

violated.  Sphericity is a necessary and sufficient condition for the F to be valid.  The

ANOVA results are displayed in Table 6.34.

Table  6.34
ANOVA on humans’

reaction times

Effect DF F p
Similarity 1,36 9.927828 .0032716
Inference 3,108 7.709543 .0001027

Similarity*Inference 3,108  .372422 .7730570

The results shown in Table 6.34 indicate a significant effect of similarity and inference

type on the speed of processing.  The more similarity, the more time it takes to draw an

inference.  This confirms INFERNET’s hypothesis.

6 . 4 . 3 Similarity and Multiple Instantiation: Comparison between simulator
and humans data

Figure 6.20 compares the proportion of inferences between INFERNET simulator and

human data.  These proportions are similar but a statistical measure is necessary.

Figure 6.20
Comparison

between human and
INFERNET
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inference
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Table 6.35 displays log-linear results.  The Log-linear analysis was performed to the test

differences between INFERNET and humans inferences.  The G2 values are underestimated

because the data were analysed with a between-subject design.  The Rasch model could not

be applied because of the between-within design.  The G2 are probably correct because of the

numerous low frequency cells which cause the G2 to be overestimated.  Table 6.35 displays

ANOVA results on 2 between-subjects and 1 within-subjects factors with 4 levels.  The

sphericity assumptions were violated, so a Box correction (ε̂ =0.8696287) on the number of

degrees of freedom was performed.  The variances for the 4 measures are all homogeneous

across groups.

None of the differences is significant: there is no effect of the contrast between simulator

and human (group).  No interaction in which the variable group is involved is significant.

ANOVA confirm these results.

Table 6.35
Log-linear analysis

and ANOVA on
frequencies of

inferences:
comparison between

INFERNET and
humans

DF G2 p F DF p

Independence 15 21.57718 .1194621
Group 1 .173888 .6766793  .085011 1,66 .771533

Group*Inference 3 3.890072 .2735816 1.080963 2,198 .337628
Group*Similarity 1 .115133 .7343743 <.000001 1,66 >.99999

G*Inf*Sim 3 2.767412 .4289053 1.496718 2,198 .223187

Figure 6.21 displays the comparison between INFERNET simulator and human reaction

times.  The differences between “similar” and “less similar” groups are larger for humans

than for INFERNET.

Figure 6.21
Comparison of

humans and
INFERNET reaction

times
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Effects are computed by an ANOVA with 2 between-subjects variables (group and

similarity) and 1 repeated measures variable (inference).  The sphericity assumption is
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violated.  (Box correction ε̂ =.650408 was used).  These results must be taken with caution

since the variances are not homogeneous.  The results are displayed in Table 6.36.

Table 6.36
ANOVA on humans

and INFERNET
Reaction times

Effect DF F p
Group 1,48 .462535 .499709

Group*Inference 2,144 8.12863 .000436
Group*Similarity 1,48 3.45526 .069188

Group*Similarity*Inference 2,144 .735571 .477671

The only significant effect is the interaction between group and inference.  This means

that INFERNET’s reaction times do not increase monotonically from MP, DA, AC, MT, as

humans’ do.

6 . 4 . 4 Discussion

This experiment shows that, as INFERNET predicted, processing related symbols impairs

processing.  This similarity effect was already predicted for short term memory (Chapter 3).

Here, multiple instantiation provides an explanation of the similarity effect on short term

memory and reasoning.  If objects to be stored in short term memory share common resource

units and if they need to be simultaneously active and differentiated, they are multiply

instantiated.  A model like INFERNET is able to provide a probable explanation of this

phenomenon based on rather simple neurobiological constraints.

6.5 General Discussion

This set of studies shows how a computational model can provide fruitful hypotheses about

cognition.  The initial constraint of having a short term memory as the activated part of the

long term memory leads to questions about the mechanisms that make possible multiple

instantiation.  Period doubling has been hypothesized as a potential solution.  The feasibility

of this hypothesis and its conformity to human cognition was tested in experiment 4.  The

period doubling solution puts constraints on the treatment of multiply instantiated objects.

The first prediction is that the difficulty of processing should be a function of the number of

instances.  The second prediction is: When there is too many instances, there must be a

mechanism for reducing the number of instances, replacing the initial representation by an

equivalent, but reduced one.  Experiment 5 tested the first and the second prediction and

showed that increasing the number of instances increases reaction times.  This experiment

also showed that when the number of instances can be reduced by the presence of

symmetries, reaction times decrease. The third prediction follows from the nature of

distributed representations.  If the representations of objects or symbols are distributed,

similar representations should share more nodes than very distinct ones.  If similar objects
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must be represented simultaneously but also must be differenciated, common nodes must be

bound to different sets and therefore must be multiply instantiated.  For this reason,

similarity should impair performance.  Experiment 6 confirmed the third prediction, i.e.,

processing similar objects increases reaction times.

Compared to other potential solutions to the multiple instantiation problem, INFERNET

provides several advantages.  Solution which separate short term memory from long term

memory do not provide constraints on multiple instantiation.  These solutions should be

rejected on the grounds that human performance is constrained by multiple instantiation.

Solutions involving multiple copies of predicates and their arguments in long term memory

are uneconomical and it cannot account for effects of similarity, since they tend to rely on

localist representation schemes.  Further, the constraints that they put on multiple instantiation

are arbitrary.  For example, in SHRUTI, a maximum of 3 copies of predicates are allowed.

This number of copies does not emerge from an underlying mechanisms and could just as

well be set to 1000.  By contrast, INFERNET’s period-doubling solution is based on known

neurobiological mechanisms and provides emergent constraints on multiple instantiation.

INFERNET still cannot handle recursive predication, however.  This will be discussed in the

chapter 8.

Multiple instantiation effects would seem to be in contradiction with priming effects.

Connectionist models explain priming by a pre-activation of shared units involved in the

representation of successive objects.  The difference between multiple instantiation and

priming is the time scale.  Multiple instantiation involves the simultaneous use of shared

units while priming involves the successive use of shared units.  INFERNET is sensitive to

multiple instantiation and can still be sensitive to priming.  Pre-activation of units should also

facilitate successive use of them.





7 Exploring the INFERNET
Simulator

In the previous chapters, INFERNET parameters were held constant.  This chapter will

explore INFERNET’s reactions to variations in parameters.

A previous paper (Sougné, 1998b) discussed the fact that adding noise to the INFERNET

simulator improved its performance.  It was also discovered that INFERNET was rather

resistant to the amount of overlapping distribution in the objects representation (see also

sections 3.4.4 and 6.4).  Figure 7.1 shows the simulation results of INFERNET.  The task

was to find “Whose love is reciprocated?” and “Who is jealous of whom?” when given “John

loves Louise and Louise loves John” and “John loves Louise and Louise loves Gray.”  The

performance of the system was measured by the percentage of correct responses and by the

time taken by the system to arrive at the correct bindings.  In this experiment, each object was

composed of 16 nodes.  In the Non-overlapping condition, no object shared nodes with other

objects, whereas in the overlapping condition, each object shared 4 nodes with two other

objects which will never be bound to the same role.  Noise was added at each time step.

Experiments were composed of 20 trials for each of the four conditions.

Figure 7.1 shows that, in general, overlapping distributions reduce the percentage of

correct answers, but when the response is correct, response time decreases (if there is no

noise).  In the task tested, most objects were doubly instantiated and the representational

overlap means that more instantiations will occur.  Consequently, certain nodes must be

assigned to more than two windows of synchrony.  For example, “Louise” nodes must be

synchronized with “Lover” and “Lovee” nodes, but if “Louise” shares nodes with “Love”,

these shared nodes must fire in additional windows of synchrony.  Since these nodes are

affected by a refractory period, some of the required spikes cannot occur and the proportion

of correct answers thus decreases.
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Figure  7.1
Effects of noise and

distribution.  (A)
shows the

percentage of
correct responses,

(B) displays the time
taken by the system

to learn the correct
bindings.
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Why does binding fixation convergence time decrease in the (noise-free) overlapping

condition?  Postsynaptic nodes require the conjunction of activation at a precise time to fire.

If the conjunction involves input from different objects and if these objects share nodes in

common, the increase in firing rate increases the chance of having a conjunction of activation

that causes the firing of the postsynaptic node.  On the other hand, this will also increase the

number of inappropriate firings of these postsynaptic nodes.  This increases response errors

and the system rapidly reaches a local minimum.  When noise is added, it provides a means

of escaping from these local minima, thus improving the frequency of correct responses, but

also increasing response times.  Similar explanation for similar effect in simulated annealing

has been provided by Kirpatrick, Gelatt, & Vecchi (1983),   Noise makes the system more

erratic before reaching a stable point.  It allows exploration of a bigger part of the space,

which takes time, but improves the chance of finding the best answer.

The response of a non-linear system to weak periodic input can be enhanced by the

presence of an optimized level of white noise.  This phenomenon has been called stochastic

resonance.  Benzi, Sutera & Vulpiani (1981) were the first to describe this mechanism.  They

described a dynamical mechanism in which weak noise acting with a bistable model explained

variations of the earth climate.  The presence of white noise (i.e., purely random noise) is

considered to be an important factor for the phenomenon to arise (Maddox, 1994).  There are

different domains in which stochastic resonance has been observed including climatology,

technology of super-conductors, and biology (Wiesenfeld & Moss, 1995).
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In neuroscience, various empirical studies describe stochastic resonance in sensory

neuron firing.  Douglass, Wilkens, Pantazelou & Moss (1993) showed that weak mechanical

stimulation detection can be enhanced by an optimal noise intensity.  Noise applied to a single

mechanoreceptor cell of the crayfish enhances its responsiveness to weak stimuli.  Levin &

Miller (1996) showed similar facilitation of weak signal detection on mechanosensory system

of the cricket.  Bezrukov & Vodyanoy (1995) observed enhancement of transduction across

ion channels by noise.

In the field of artificial neural networks, stochastic resonance has been observed by

different authors (Collins, Chow & Imhoff, 1995; Stemmler, Usher & Niebur, 1995;

Grossberg, & Grunewald, 1997).  Stochastic resonance according to these studies enhances

the detection of weak signals but not strong signals.

In the following sections, the effect of noise will be explored.  Different kinds of noise

will be explored.  Noise will be related to different variables.  Since stochastic resonance has

been found to act on sub threshold signals, noise will be related to variation in INFERNET’s

node firing threshold.

7.1 Noise on connection weights

Noise was first applied to connection weights.  These weights will have a chance to be

increased or decreased.

7 . 1 . 1 Noise and Threshold

The first experiment recorded INFERNET’s performance at different levels of noise for

different values of the threshold Θ (see Chapter 2).  For each activated connection, 2 random

numbers are drawn between 0 and some maximum value.  The first random number will be

subtracted from the connection weight, the second will be added to the connection weight.

The minimum and maximum of resulting random addition to weights were set to (0 0), (-10

20), (-20 40), (-30 60), (-40 80) and (-50 100).  Remember that the minimal value of a

connection weight is -127 and the maximum value is 127.  When the minimum and maximum

are set to 0, there is no noise on the connection weight.  Table 7.1 displays the percentage of

INFERNET’s correct responses for a problem of finding reciprocal love from these premise:

“John loves Louise and Louise loves John”.  The experiment was composed of 10 trials for

each combination.  Figure 7.2 displays a 3D plot of these data.  Noise significantly improve

the performance of the system which is very poor when there is no noise on connections.

When noise amplitude is too high, however, there is less benefit for high values of threshold,

and performance is reduced for low threshold values.
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Table 7.1
Percentage of

INFERNET correct
response for

different levels of
noise and different

thresholds.

Noise amplitude
Threshold 0 0 -10 20 -20 40 -30 60 -40 80 -50 100

280 30 99 93 68 30 3
290 30 89 87 75 29 1
300 10 99 99 79 36 7
310 0 100 99 87 63 21
320 0 80 89 88 75 1
330 0 89 99 93 76 38
340 0 80 98 97 82 33
350 0 90 100 99 86 69

Figure 7.2
3D plot of

percentage of
correct response for

different level of
noise on connection

weights and
different thresholds.
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7 . 1 . 2 Increasing vs. decreasing connection strength with noise

When noise is added in a real neural system, it is done by producing a noisy stimulus e.g. air

disturbance (Levin & Miller, 1996).  This noise consists in adding something to the nervous

system or increasing the overall activity of the system.  This noise helps sub-threshold

signals to cross the threshold (stochastic resonance).  The following experiment tests the

relative effect of decreasing the overall activity of the network compared to increasing the

overall activity of the network.  More precisely this second experiment explores the respective

effects of noise which results in adding excitation to the network compared to noise which

results in adding inhibition to the network (i. e. adding or subtracting a value on connection

weights with noise).  For each activated connection 2 random numbers are drawn between 0

and different maximum values.  The first random number will be subtracted from the

connection weight, the second will be added to the connection weight.  The maximum of the

random numbers that increase the connection weights was set to 0, 10, 20, 30, 40 and 50,

and the minimum of the random numbers that decrease the connection weights was set to 0,

-10, -20, -30, -40 and -50.  Table 7.2, presents percentage of correct answers for each
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combination of random numbers applied to addition and subtraction.  Threshold was set low

(280).

Table 7.2
Percentage of

INFERNET correct
response for

different levels of
noise applied to

addition or
subtraction

Maximum adding value or amplitude
0 10 20 30 40 50

Minimum 0 45 69 100 99 100 97
subtracting -10 10 20 80 100 98 99

value -20 0 0 23 90 90 98
-30 0 0 10 20 88 100
-40 0 0 0 20 62 81
-50 0 0 0 0 10 26

The problem was to find reciprocal love from these premise: “John loves Louise and

Louise loves John”.  The experiment was composed of 10 trials for each combination.

Figure 7.3 displays a 3D plot of these data.  Noise that raises weight values increases the

performance of the system.  Noise that lessens weight values reduces the performance unless

the amplitude of adding noise is bigger.

Figure 7.3
3D plot of

percentage of
correct response for

different level of
noise applied to

addition or
subtraction on

connection weights
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7.2 Does stochastic resonance depend on the problem?

7 . 2 . 1 Noise on connection and Threshold

The third experiment recorded INFERNET performance at different levels of noise for

different values of the threshold Θ.  This experiment  is similar to the first experiment, but the

problem is different.  For each activated connection 2 random numbers are drawn between 0

and different maximum.  The first random number will be subtracted from the connection

weight, the second will be added to the connection weight.  The minimum and maximum of
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resulting random addition to weights were set to (0 0), (-10 20), (-20 40), (-30 60), (-40 80)

and (-50 100).   Table 7.3 displays the percentages of INFERNET correct response for a

problem of finding jealousy from these premise: “John loves Louise and Louise loves Gary.

The experiment was composed of 10 trials for each combination.  Figure 7.4 displays a 3D

plot of these data.  Noise improves performance of the system which is very low when there

is no noise on connection.  When noise amplitude is too high, performance is reduced.

Table 7.3
Percentage of

INFERNET correct
response for

different levels of
noise and different

thresholds.

Noise amplitude
Threshold 0 0 -10 20 -20 40 -30 60 -40 80 -50 100

280 19 98 19 0 0 0
290 2 100 68 0 0 0
300 3 98 69 4 0 0
310 0 97 80 24 0 0
320 0 99 60 20 0 0
330 0 99 90 38 0 0
340 0 97 100 50 0 0
350 0 87 95 45 0 0

Figure 7.4
3D plot of

percentage of
correct response for

different level of
noise on connection

weights and
different thresholds.
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Compared to the previous problem (experiment 1), there is more of a clear-cut optimal

value for noise around 10.

7 . 2 . 2 Increasing vs. decreasing connection strength with noise

The fourth experiment explores the respective effects of adding or subtracting a value on

connection weights with noise.  For each activated connection, 2 random numbers are drawn

between 0 and different maximum values.  The first random number will be subtracted from

the connection weight, the second will be added to the connection weight.  The maximum of

the random numbers that increase the connection weights was set to 0, 10, 20, 30, 40 and
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50, and the minimum of the random numbers that decrease the connection weights was set to

0, -10, -20, -30, -40 and -50.  Table 7.4, shows the percentage of correct answers for each

combination of random numbers applied to addition and subtraction.  The firing threshold

was set low (280).

Table 7.4
Percentage of

INFERNET correct
response for

different levels of
noise applied to

addition or
subtraction

Maximum adding value or amplitude
0 10 20 30 40 50

Minimum 0 11 74 98 88 90 100
subtracting -10 0 8 74 97 96 87

value -20 0 0 3 73 95 99
-30 0 0 0 8 75 93
-40 0 0 0 0 9 74
-50 0 0 0 0 0 4

The problem was the same as in previous experiment.  The experiment was composed of

10 trials for each combination.  Figure 7.5 displays a 3D plot of these data.  Noise raising

weight values increases the performance of the system.  Noise decreasing weight values

reduces the performance, unless amplitude of increasing weight is bigger than the amplitude

of decreasing weight.

Stochastic resonance seems to be unaffected by the problem.  Similar effects were

observed for the 2 different problems.  Increasing weight with noise in both cases increases

performance while decreasing weight randomly reduces the performance.

Figure 7.5
3D plot of

percentage of
correct response for

different level of
noise applied to

addition or
subtraction on

connection weights
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7.3 Noise on spike generation

The following experiments will explore the effect of noise on node spiking.  At any given

time, each node has a low probability of firing, even in absence of activation.  Conversely,

for nodes whose activation crosses the firing threshold, there is the same low probability that

it will not fire.  This kind of noise is acting at a higher level than noise on connection

weights.

7 . 3 . 1 Noise and Threshold

The fifth experiment explored different probabilities to force a spike or prevent a spike at

different threshold levels.  The experiment was composed of 3 trials for each combination.

The problem was to find reciprocal love from these premises: “John loves Louise and Louise

loves John”.  Table 7.5 displays the percentage of correct answers.  Figure 7.6 displays a 3D

plot of these data.

Table 7.5
Percentage of

INFERNET correct
response for

different levels of
noise to force or
prevent a spike

Probability to force or prevent a spike
Θ 0 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .011 .012

280 100 100 7 3 100 100 9 7 100 100 8 7 5 3 8 3 7 3 8 3
290 6 7 6 7 100 100 100 100 100 100 9 0 9 3 9 0 8 3 7 3
300 7 0 0 6 7 100 6 7 100 100 6 3 9 7 100 8 7 9 3 6 0
310 0 100 0 100 3 3 7 7 9 7 9 0 6 3 9 7 6 7 6 3 8 7
320 0 3 3 3 3 3 0 3 3 6 7 6 7 3 0 3 3 7 7 6 3 8 0 5 7
330 0 1 0 0 0 3 3 6 7 3 0 6 7 0 3 3 0 5 3 9 0
340 3 3 0 3 3 4 0 0 3 3 100 3 0 7 3 0 5 7 1 0 6 3
350 0 0 0 0 0 3 3 0 3 3 0 0 0 3 0 5 7

Figure 7.6
3D plot of

percentage of
correct response for

different level of
noise applied to

force or prevent a
spike

 

3
4
0

3
3
0

3
2
0

3
1
0

3
0
0

2
9
0

2
8
0

0 0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

0
9

0
.0

1
0
.0

1
1

0
.0

1
2

100
90
80
70
60
50
40
30
20
10
0

P
e
rc

e
n
t 
co

rr
e
ct

P
e
rc

e
n
t 
co

rr
e
ct

Noise p on spikeTheshold

0
10
20
30
40
50
60
70
80
90
100

The effect of stochastic resonance is less pronounced than when noise is applied to

connection weight.  Noise increases performance when the threshold increases.  At higher

probabilities of noise, the performance decreases.  In this case noise is a relatively rare and
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discrete event which has an important effect.  When noise is applied to connections, it has a

less important effect but is applied much more widely.

7 . 3 . 2 Comparison between forcing and preventing a spike

The sixth experiment compared different probabilities of forcing a spike with various

probabilities of preventing a spike.  The experiment was composed of 10 trials for each

combinaison and the threshold was set low (290).  The problem was to find reciprocal love

from these premises: “John loves Louise and Louise loves John”.  Table 7.6 displays the

percentage of correct answers.  Figure 7.7 displays a 3D plot of these data.

Table 7.6
Percentage of

INFERNET correct
response for

different levels of
noise to force vs. to

prevent a spike

Probability to force a spike

.001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .011 .012
Probability .001 9 0 8 4 100 100 9 9 8 9 9 8 8 5 9 1 7 2 7 4 7 3
to prevent .002 6 9 9 0 8 0 8 9 9 8 8 8 9 0 7 4 8 7 7 9 7 8 7 2

a spike .003 7 0 9 0 7 1 8 8 9 9 9 0 8 7 7 4 8 8 8 4 7 4 7 8
.004 5 3 100 9 0 100 8 9 9 8 9 9 8 9 8 4 7 2 7 6 6 1
.005 6 0 9 0 100 100 8 9 8 7 9 5 7 8 9 0 8 6 7 0 6 4
.006 3 0 8 0 9 0 7 8 9 8 8 9 7 7 8 9 8 3 8 2 5 8 6 0
.007 6 7 100 6 0 7 0 9 9 8 6 8 8 9 7 9 6 8 4 8 1 6 9
.008 8 8 8 9 8 0 9 9 8 9 8 6 9 0 8 3 9 4 7 7 6 3 7 7
.009 8 0 8 5 7 0 9 9 100 9 0 9 5 8 1 9 3 8 2 8 6 7 8
.01 9 0 7 8 8 0 9 0 9 0 8 8 9 6 8 6 7 1 9 2 6 1 8 6

.011 7 9 6 0 9 9 8 8 8 9 7 9 9 5 8 2 8 3 7 4 7 5 6 7

.012 7 0 9 0 8 0 7 9 100 8 9 9 7 8 8 9 3 8 5 8 0 7 8

Figure 7.7
3D plot of

percentage of
correct response for

different level of
noise applied to

force vs. prevent a
spike
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Performance of the system is quite erratic and stochastic resonance in this experiment is

questionable.  Including noise on such a high level event like a spike does not seem to

improve the performance of the system.  Stochastic resonance appears to require that noise be

applied to a multitude of elements with a low perturbing modification.  Stochastic resonance
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facilitation seems to require a complex dynamical system: a system that is composed of a

large number of interrelated variables.

7.4 Noise on Delay

Another type of noise was also explored.  The following experiment tested the effect of noise

on connection delays.  The effect of noise on delays was already presented in section 3.4 to

reduce discriminability of objects, thus reducing short term memory span.  In this experiment

various probabilities of applying noise on delays will be explored at different threshold

values.  The noise modifies the connection delay by adding to it a random value between -2

and 2 ms.  The delay can be shortened or delayed by a maximum of 2 ms.  Probabilities

express the chance of adding this random value to the delay of an active connection.  The

experiment was composed of 10 trials for each combinaison of noise probability and

threshold value.  The problem was to find reciprocal love from these premises: “John loves

Louise and Louise loves John”.  Table 7.7 displays the percentage of correct answers. Figure

7.8 displays a 3D plot of these data.

Table 7.7
Percentage of

correct answers for
different

probabilities of noise
on delay and

different threshold
values

Probability to modify connection delay
Θ 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11 .12 .13 .14 .15 .16 .17 .18 .19 .2 .21 .22 .23 .24

280 6 2 5 1 3 1 5 0 1 3 3 5 3 7 5 8 3 9 2 0 1 8 0 1 2 0 1 6 9 1 7 9 0 0 0 0 0 0 3
290 3 7 1 0 1 0 2 0 1 2 2 0 3 0 1 7 1 1 1 8 1 0 2 0 0 1 0 1 1 1 4 1 0 0 0 0 0 0 0 0 0
300 1 9 6 2 6 4 1 0 1 0 0 1 0 0 2 0 0 0 9 8 0 0 0 0 0 0 0 0 0 0 0
310 1 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
320 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
330 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
350 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7.8
3D plot of

percentage of
correct response for

different threshold
and different level of

noise applied to
delays
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Noise on delays does not enhance INFERNET’s performance.  The reason appears to be

that a noisy delay does not cause node activation to cross the firing threshold.  On the

contrary, perturbation of delays tends to reduce the level of activation of a node.  Since a

node in INFERNET require several excitatory signals arriving at the same time for it to fire,

increasing noise on delays impairs the synchronous arrival of signals.

7.5 Noise and more realistic PSP curve

This last experiment will explore the effect of noise on connection weights using a Post

Synaptic Potential curve which more closely resembles that of real neuron transmission.  This

new PSP function is plotted in Figure 7.8, together with the old PSP function.  The new PSP

curve gives more activation and this activation rises more slowly and decreases less sharply.

Figure 7.9
Comparison

between new and old
PSP functions

new PSP

old PSP

This experiment explores the respective effects of adding or subtracting a value on connection

weights with noise together with the new PSP function.  For each activated connection 2

random numbers are drawn between 0 and different maximum values.  The first random

number will be subtracted from the connection weight, the second will be added to the

connection weight.  The maximum of these random numbers were set to 0, 10, 20, 30, and

40, while the minimum of the random numbers that decrease the connection weights was set

to 0, -10, -20, -30, and -40.   The problem was to find reciprocal love from these premise:

“John loves Louise and Louise loves John”.  The experiment was composed of 10 trials for

each combination.  The threshold was set low (280).  Table 7.8, presents the percentage of

correct answers for each combination of random numbers applied to addition and subtraction.

Figure 7.10 displays a 3D plot of these data.  Noise that raises weight values increases the

performance of the system.  Noise that decreases weight value reduce the performance unless

adding weight value amplitude compensates.

Compare these data to those presented in sections 7.1.2 and 7.2.2.  The difference of

noise effect relies on the less pervasive effect of noise which decreases connection weights.

Looking at the PSP curve in Figure 7.9 provides an explanation.  The new PSP function

makes a connection give more excitation and more inhibition, and this activation stays longer

at a high value.  If the noise adds too much to the connection weights, the associated nodes

will receive more excitation and less inhibition.  A lot of nodes will fire inappropriately.
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Adding noise that decreases the value of excitatory weights and increases the effect of

inhibitory connections will make the system reach an equilibrium.  This fact does not

contradict the idea that noise helps sub threshold states.  It shows that transforming over

threshold states into sub threshold states let stochastic resonance act.

Table 7.8
Percentage of

INFERNET correct
response for

different levels of
noise applied to

addition or
subtraction and with

the new PSP
function

Maximum adding value or amplitude
0 10 20 30 40

Minimum 0 70 81 82 42 26
subtracting -10 28 89 77 56 56

value -20 9 16 81 50 62
-30 0 0 44 74 88
-40 0 0 0 20 78

It has to be noted that this more neurally plausible PSP function does not improve the

system’s performance.  It just requires different values of noise for reaching an optimum.

The important factor in the PSP function is the decrease of activation (the leaky factor of

integrate and fire neurons).  This leak ensures that nodes will be sensitive to temporal factors

like the precise time of convergence of excitation.  This enables the precise functioning of

temporal gates described in chapter 2.

Figure 7.10
3D plot of

percentage of
correct response for

different level of
noise applied to

addition or
subtraction on

connection weights
with the new PSP

function.
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7.6 Discussion

This chapter provides evidence for stochastic resonance in the INFERNET simulator.

Stochastic resonance seems to help sub threshold signals to cross the threshold.  But we have
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found that stochastic resonance also helps in reducing unwanted spurious activity.  Stochastic

resonance seems to appear if noise is randomly applied to a large number of variables like

connections.  In the above experiments there were 87552 connections.  When noise is applied

to a less numerous set of structures, like nodes, there is less facilitation by stochastic

resonance.  This shows that stochastic resonance effect is related to complex dynamical

systems.

INFERNET not only preserves the connectionist quality of being resistant to perturbed

activity but it performance has also been shown to be enhanced by small low-level

perturbations.  This means that INFERNET can process symbols while maintaining some of

the advantages of distributed processing, such as resistance to perturbation and graceful

degradation.

In exploring different PSP functions, our aim was to determine whether the simplification

of neuron functioning in INFERNET were appropriate.  The results are encouraging.  A

more realistic PSP function does not provide additional reasoning capabilities but

significantly increases computational demands.  Consequently, the level of simplification

used in INFERNET would seem to be appropriate.





8 Conclusions

Based on neurobiological constraints, a cognitive model of binding has been constructed and

implemented on a computer.  This model is able to treat symbols and to display reasoning

capabilities.

INFERNET is a connectionist model using integrate-and-fire nodes.  In INFERNET,

nodes can be in two different states: they can fire (“on”), or they can be at rest (“off”).  A

node fires at a precise moment and transmits activation to other connected nodes with some

time course.  When a node activation or potential reaches a threshold, it emits a spike.  After

firing, the potential is reset to some resting value.  INFERNET solves the binding problem

by synchrony.  Each object is represented by a cluster of nodes firing in synchrony.  If the

firing distribution is tightly concentrated around the mean, the object is considered to be

activated.  Objects are bound to their roles by synchronous firing.  This synchronous activity

defines a window of synchrony: a delay within which the required nodes fire.  This delay is

constrained by the precision of synchrony (± 5 ms).  In INFERNET, discrimination is

achieved by successive windows of synchrony.  Objects and bindings are maintained in

memory by oscillation.  Once a node is activated, it tends (but not necessarily) to begin

oscillating at a γ (30-80 Hz) frequency range.  The temporal gap between 2 spikes of a node

is therefore from 14 to 33 ms.

The rhythmic activity and the precision of synchrony constrains the number of

distinguishable entities that can be simultaneously maintained in short term memory.  This

constitutes the short term memory span of INFERNET.  This span was studied in chapter 3

and corresponds well to human short term memory span.  This constraint also applies to the

treatment of predicates.  In INFERNET, predicates and roles are linked by a specific temporal

order.  The activation of a predicate is always followed by the successive activations of its

different roles, each of which is assigned to a particular window of synchrony.  In chapter 5

the effect on the number of predicate arguments was found to impair reasoning both for

INFERNET and for humans.
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In INFERNET, the number of steps required for transmitting activation from one point to

another is constrained by two factors.  The first is the probability of error in transmission

which increases as the number of steps increases.  The second constraint concerns the lag

between the starting point of the filler nodes’ oscillation and the starting point of the role

nodes’ oscillation.  The more steps that are required, the greater the lag between role and filler

nodes’ oscillation starting points.  If the lag increases, the number of synchronizations

between role and filler nodes firing decreases.  In chapter 4 we showed that these constraints

can explain effects of negation on reasoning.

The last constraint concerns multiple instantiation.   INFERNET achieves multiple

instantiation by means of period doubling.  Nodes pertaining to a doubly instantiated

concepts will sustain two oscillations.  This means that these nodes will be able to

synchronize with two different sets of nodes.  Since nodes have a refractory period after

firing, the lag between 2 successive spikes of a node cannot physically be reduced too far.

Consequently, INFERNET’s capacity to process multiple instantiations is limited.  In chapter

6 we showed the limitations of INFERNET and humans in the processing of multiple

instantiation.

8.1 Comparisons with other work

The advantages of INFERNET over related works involve both its neural and psychological

plausibility.

In chapter 1, it was argued that the only neurally plausible mechanisms for binding were

either firing rate, firing latency, phase, or firing synchrony.  Among these possibilities

connectionist models have only explored binding by synchrony.  Other implemented

connectionist solutions do not have neurobiological justifications.  Among models of binding

by synchrony, SHRUTI (Shastri & Ajjanaggadde, 1993), LISA, (Hummel & Holyoak,

1997) are the main competitors of INFERNET.  INFERNET is the only integrate-and-fire

neurally based model.  Only INFERNET uses a Post-Synaptic Potential function with a

refractory period.  As a result, the nodes in INFERNET are neurally more plausible than

those in SHRUTI and LISA.  Moreover, only INFERNET and LISA use distributed

representation, while SHRUTI does not.

In terms of symbolic processing, symbolic models are too powerful, while classical

connectionist models are not powerful enough to account for human cognition.  INFERNET

has a constrained human-like symbolic processing capability.  It has been shown to be

comparable to human in a relatively wide range of reasoning tasks.  For example,

INFERNET displays human-like effects in short term memory (STM) capacity, in serial

effects on STM, in similarity effects on STM, in double dissociation between STM and long
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term memory, in the negation effects on conditional reasoning, in the treatment of predicates,

and in effects related to multiple instantiation.

No competing connectionist model has such a large scope of human cognition simulation

abilities.  However, some models display abilities that are not yet possible with INFERNET.

LISA, for example, can account for human-like analogy making which necessitates predicate

embedding.  The work of Jensen & Lisman (1998) can account for the Sternberg effect

(Sternberg, 1966) which necessitates matching abilities.  SHRUTI has abilities of parsing

and planning, but its performance was never be compared carefully with human data.

8.2 Problems and their potential solutions

8 . 2 . 1 Learning

One of the main limitation of INFERNET is its lack of ability to build a Long Term

Knowledge base.  How could INFERNET learn to build the interconnected successive gates

as that described in Figure 4.3?  Some solutions based on Hebbian learning have been tried,

but none of them has succeeded in learning long chains of knowledge like the successively

connected AND-gates.

What would be needed is an algorithm that has power similar to the backpropagation

algorithm for feedforward networks.  If, by chance, the network correctly made node A fire

at the right moment, one could strengthen connections that made the node A fire.  But how to

reinforce the preceeding connections, connections responsible for the firing of nodes that in

turn provoked the firing of node A?  Do they all need to be strengthened?  There is a distinct

possibility of ending up with a network that make the node A fire whatever the input is and

this, of course, is undesirable.

The problem is similar to the learning of syn-fire chains (Abeles et al., 1993) which were

introduced in section 2.6.  In recording spike timing of different cortical cells, Abeles et al.

(1993) observed that when a neuron A fired, neuron B would fire 151ms later while neuron

C would fire 289ms later with a precision across trials of 1 ms!  Such long delays, would

require dozens of transmission delays from presynaptic to postsynaptic neuron.  How could

such a long chain of successive neuron firing could be learned?  Hertz & Prügel-Bennet

(1996), have studied learning of syn-fire chains but this learning is at each step (layer by

layer) controlled.  An external input produces a syn-fire chain and the Hebbian learning tends

to reproduce it independently.

What we need is an algorithm that does not monitor each step of the chain.  It would

require a means of backpropagating the error.  If a node fires at the right time, the weights

between it and its presynaptic nodes must be reinforced, but the weights arriving at these

presynaptic nodes must also be reinforced, although to a much lesser extent.
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Some recent neurobiological discoveries could give an insight.  Engert (1998) recorded

Long term depression (LTD) at different synapses around a neuron.  He found that the LTD

was spreading around the synapse that was actually responsible for LTD,  with the particular

pattern displayed in Figure 8.1.  LTD happens when the presynaptic cell A signal arrives at

the postsynaptic cell B membrane after the spike of this cell B.  In this case, the efficiency of

the cell A-B connecting synapse is reduced.  Engert (1998) found that synapses connecting

other presynaptic cells to cell B were also depressed.  He also observed that synapses

connecting the presynaptic cell A to other cells than B were also depressed.  Moreover,

synapses connecting cells to cell A were as well depressed.  This observation shows that

synapse modification is backtracked along the chain of successive connections that produced

the incorrect stimulation of the postsynaptic cell B.  Research of this kind is essential for the

future study of learning.

Figure 8.1
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8 . 2 . 2 Embedding of predicates

This problem was mentioned in  chapters 5 and 6.  Embedded predicates are predicates

whose arguments are predicates.  For example, observing in a game of billiards that “the blue
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ball went into the pocket because the man shot the cue ball, which collided with the blue ball”

requires embedding predicates.  Figure 8.2 represents schematically how predicates are

embedded  Get (blue-ball, pocket) is the consequent of the antecedent Collide (cue-ball, blue-

ball) which itself is a consequent of the antecedent Shot (man, cue-ball).

A good solution to this problem should reflect the difficulties that people have dealing

with embedded predicates.  In chapter 5, evidence was provided to show that people have

considerable difficulty nesting 3 predicate levels and almost never nest 4 levels.

Figure 8.2
Predicates

embedding in “the
blue ball went into

the pocket because
the man shot the

cue ball which
collided the blue

ball”

Cause (consequent, antecedent)

Goes into (blue-ball, pocket)

Cause (consequent, antecedent)

Pushed (man, cue-ball)

Collided (cue-ball, blue-ball)

A possible solution would be to make predicates bind to an argument of another predicate

by synchrony.  In Figure 8.3, the predicate “goes into” fires in synchrony with

“consequent”, followed by the firing of its own arguments: “blue-ball” and “pocket”.  The

predicate “collide” synchronises with “antecedent” followed by the firing of its own

arguments: “cue-ball” and “blue-ball”.  This solution would work with two levels of

embedding.  When more levels of embedding are needed, one possibility would be to

alternate two pairs of embeddings.  The first pair has just been described, the next pair would

be represented by the synchronous firing of “consequent” with the predicate “collide”

followed by its arguments firing “cue-ball” and “blue-ball”, as well as the synchronous firing

of “antecedent” with the predicate “shot” followed by its own arguments firing “man” and

“cue-ball”.

This solution would be constrained by the possibility of interference between different

roles that predicates bind to.  For example, “collide” is successively bound to “antecedent”

then to “consequent” in Figure 8.3.  This is a theoretical solution that has yet to be

implemented and tested.



174 Chapter 8: Conclusions

Figure 8.3
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8 . 2 . 3 Representation

Predicates and rules in INFERNET have a particular fixed representations.  Role nodes fires

after predicate nodes.  For example, the expression “love (lover, lovee)” is represented by

making “love” nodes fire 5 ms before “lover” nodes and 10 ms before “lovee” nodes.  How

this structure is achieved was not the purpose of this work, but it raises some questions.  A

system cannot rely solely on temporal or spatial structure to produce an unambiguous

representation.  There are too many different temporal or spatial structures that could be

considered as equivalent.  “John loves Mary” in English has a temporal fixed structure of the

type Subject-Verb-Complement.  “Mary is loved by John” has a virtually identical meaning

but nonetheless, does not share the same temporal structure.  Does every predicate and its

arguments have two representations: active and passive?  This would hardly be economical.

What about languages that do not assign predicate roles by the means of their location in the

sentence?  In Latin, for example, the order of subject verb and complements is of no

importance; the roles are assigned by a particular suffix.  The temporal structure of vision is

even more complex.  If one see a cat on a car’s roof, this should lead to the equivalent

representation, whether the cat was seen first or the car was seen first.  Moreover, the speed

of perception should not influence the resulting temporal structure of the representation.

A system must be able to tune perception into a fixed and unambiguous representation

that will be used for reasoning.  This system requires top-down control, a means of

controlling the coherence of representations based on indices like spatial position (in the cat

on the roof example).  It would require nodes sensitive to a particular organizational

structure.  These nodes should have the ability to trigger the firing of other nodes at a

particular moment.  This could be done by means of connections that act on other connections

(amplification of excitation, amplification of inhibition, inhibition of excitation and inhibition
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of inhibition, etc.,  see chapter 2).  It would also need a means of mapping the

representations at hand, incorporating those representations into the Long Term Knowledge

base, and, finally, being sensitive to inconsistencies.

8 . 2 . 4 The control of attention and consciousness

This problem was already mentioned in sections 1.3.2 and 3.5.  People seem to have the

ability to control their cognition.  This requires the ability to perceive thoughts and to modify

them.

It seems that there is no brain center of consciousness. Consciousness must emerge from

many active memory representations located in different areas.  There is evidence for just

such an interaction.  Understanding language needs both hemispheres (Gazzaniga, Le Doux

& Wilson, 1977).  Inter-hemispheric disconnection remove awareness by one hemisphere of

processes originating in the other.  Each hemisphere seems to be conscious of what happens

inside it but unconscious of what happens in the other hemisphere (Mark, 1995).  So, there

must be different consciousnesses and the brain should has to make them congruent.  Crick

& Koch (1990, 1992, 1998) suggested that the mechanism for linking different

consciousnesses in the different parts of the brain was temporal synchronization of neuron

spikes.  There could also be other possible neural correlates to consciousness: firing rate and

phases.  According to Frith, Perry & Lumer (1999) numerous studies have explored neural

correlates of consciousness but they have encountered methodological problems and no clear

answer is yet available.

Finding neural correlates of consciousness is not the only problem.  We must understand

also how consciousness controls perception and action.  This will require examining the

relations between perception and attention and between intention and action.  According to

Frith, Perry & Lumer (1999), we are still far from a clear answer.

8.3 Tractability of the solution

To understand the problem of tractability, imagine a computer program solving the “travelling

salesman problem”.  This problem involves a series of cities in which the salesman has

clients.  The salesman has to visit all cities.  The problem is to find the optimal succession of

cities in the trip (the trip has to be as short as possible).  If there are 3 cities to visit, there are

3! (9) different trips to compare.  If there are 6 cities to visit, there are 6! (240) different trips

to compare.  As the number of cities increases, the problem quickly leads to combinatory

explosion, becomes “intractable”, i.e., too huge to be solved in any reasonable amount of

time.  For example, if there are 1000 cities, there will be 1000! trips to evaluate!  This is a so
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large number that no computer could find a solution.  Even if the computer is able to evaluate

1 trip every ms, it would require more than 102554 milleniums to complete the task!

The theory of complexity examines problems of this type and their potential solutions.

The order of the complexity of a process is an expression of how the time or memory taken to

perform a task increases as the number of data elements n increases.  In the above example

the order of complexity is factorial O n!( ).  A problem is tractable if its solution can be attained

with a finite and reasonable temporal and spatial computational resources, otherwise the

problem is said to be untractable (see Garey & Johnson, 1979).

The order of complexity depends on the problem, the algorithm and the architecture of the

computer.  It is clear that the INFERNET is untractable on a serial computer for certain

problems.  In other words, as the number of objects increases, the computational resources

increase by a more than polynomial factor.  However, the brain is not a serial architecture.

Implemented on a brain-like computer, the INFERNET algorithm would render problems
tractable with a constant time order of complexity     O 1( ) .  In this case, every node could

calculate their input in parallel and every connection could propagate their potential in parallel.

The problem of tractability is important because if a model fails to make problems

tractable on a brain-like machine, this model has to be rejected.  Every model that sequentially

scan Long Term Knowledge base, for example, has to be rejected, since the more facts that

are in this Long Term Knowledge base, the longer it will take to sequentially scan it.  This is

important because, for humans, the retrieval time from long term memory does not depend on

the size of it.  There is the exception of the “fan effect” (Anderson, 1983) but this only

applies to material that has been learned recently.

8.4 Epilogue

In order to build a computer program that models human cognition, we have to describe

precisely the mechanisms that will lead to a behavior as close as possible to human behavior.

The originality of INFERNET is to attempt to justify these mechanisms by neurobiological

processes.  As a result, all properties of INFERNET are at some level mechanistic.  But no

claim has been made about INFERNET’s completeness in accounting for cognition.  A

materialist approach may ultimately prove to be insufficient to explain all aspects of human

cognition, but attempts to go as far as we can with this approach will help us better

understanding the basic mechanisms underlying human cognition, in general and human

reasoning in particular.
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A INFERNET algorithm description with a pseudo-code

Here follows the pseudo-code description of INFERNET algorithm. The sub-routine a

executes a theta cycle: reset a series of variables, executes a series of gamma cycles (sub-

routine b) and reduces weights of unused connections (sub-routine c).  The subroutine b

executes a gamma cycle which is ∆tγ ms long.  It executes subroutine d and e.  The sub-

routine d executes at each ms a series of computations, it integrates inputs, reduce resistance,

looks for nodes that fire (sub-routine f), and for them, it resets their activation, assign their

resistance, execute binding learning (subroutine g) and propagates their activation.  The sub-

routine f takes inputs and looks for nodes which potential cross the threshold.
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For each theta cycle from 0 to max-theta 

Reset the activation of each node to 0

Reset the list of active connections

For each gamma cycle from 0 to max-gamma

Reset node firing counter

Do from ms = 0 to ∆tγ

For each node integrate activation taking care of PSP curve

For each node 

If activation > noisy threshold  or if node belongs to the input list 
unless that node firing counter is  > 10.

Put that node reference in the firing list of nodes

Write the node reference in a file

For each node firing assign maximum resistance to input

For each node firing in this ms, If binding learning is on

Increase each other plastic connection

For each firing node

Propagate activation with appropriate noisy weight and noisy delay

For each node firing reset the activation to 0

For each node that has fired in this cycle

Increment firing counter

For each post-synaptic connection

Reduce weight of unused connection

For each node, reduce the resistance

a

b

c

d

e

f

g

h

i
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B Statistical analysis

The empirical data reported here are analyzed in a non standard manner compared to what is

found in the psychological literature.  The motivation was to avoid certain flaws that occur in

the analysis of frequency tables and the violation of assumptions in the analysis of variance.

This section provides a description and justification of these methods.  Two types of

measures were collected: frequencies of responses and reaction times.  Frequencies have been

analyzed by the Log-linear Analysis, and reaction times by Analysis of variance (ANOVA).

B . 1 Frequency tables

Suppose that a researcher collects responses from subjects to a question from two groups and

two different contexts.  Responses are coded into two categories.  We obtain a 2*2*2

frequency table.  Table B.1 provides a example of data.

Table B.1
Example of multi-

way frequency table

Group 1 Group 2

Response α Response β Response α Response β
Context A 20 0 19 1
Context B 15 5 17 3

Many researchers use ANOVA to analyze this type of data, assigning, for example, 0 to

responses α and 1 to responses β.  This metric transformation of categorical variable is not

appropriate (see Bakeman & Robinson, 1994).  This is even more obvious when the

dependent categorical variable has more than two possible values.  Coding Oriental=1,

White=2 and Black=3, for example, implies that, at the very least, the interval separating

Orientals and Whites is the same as that separating Whites and Blacks and is half that

separating Orientals and Blacks.  This assumption is, of course, nonsensical and is the reason

that an ANOVA is inapropriate here.  In general, when you wish to explain a categorical

dependent variable by a set of categorical variable, the Log-linear analysis is the appropriate

technique.

Log-linear analysis provides a way to test the different factors (e.g. “context” and

“group” in table B.1) and their interaction for statistical significance.  The principle of Log-

linear analysis is to compute expected frequencies on the basis of marginal frequencies.

These expected frequencies are those which would be expected if the factors were unrelated.

Significant deviations of observed frequencies from expected frequencies reflect a

relationship between variables.
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Testing an hypothesis with a Log-linear analysis tests a particular model to see if it fits the

data.  If there is a significant difference between observed frequencies and expected

frequencies the model is rejected.  One can also compare the differences between two models

to estimate the effect of a particular variable or interaction.  The log-linear analysis uses the

maximum likelihood ratio chi-square G2.

For the interested reader, here follows a more detailed description.  In our example, we

are interested in the effect of the “Context” and the “Group” and their interaction on the

response.  These effects are tested by dropping interactions between the variable and the

response from a more complete model.  The interaction effect can be computed by testing the

saturated model (C+G+R+C.G+C*R+G*R+C*G*R) and the model without the interaction

(C+G+R+C*G+C*R+G*R).  The difference of the two G2 reflects the effect of the

interaction.  The effect of the Group on the response is computed by the difference between

the model with all 2-way interactions (C+G+R+C*G+C*R+G*R) and the model without the

interaction between Group and Response (C+G+R+C*G+C*R).  Similarly, the effect of

context is evaluated by the difference between these models (C+G+R+C*G+C*R+G*R)

(C+G+R+C*G+G*R).  The independence is evaluated by a model that exclude relationship

between Context and/or Group  and the response (C+G+R+C*G) in our example, since

p<.05 independence is rejected.  Table B.2 displays the log-linear analysis of the data

provided in table B.1.

We conclude by stating that the context influences the response.

Table B.2
Example of Log-

linear analysis

Model DF G2 ∆ G2 ∆ DF p Effect

C+G+R+C*G+C*R+G*R+C*G*R 0 0 - - -
C+G+R+C*G+C*R+G*R 1 1.906 1.906 1 .167 C*G*R

C+G+R+C*G+C*R 2 2.042 .136 1 .712 G*R
C+G+R+C*G+G*R 2 8.806 6.9 1 .009 C*R

C+G+R+C*G 3 8.931 .03

The G2 is sometimes over evaluated when there are many low frequency cells (less than

10).  Some authors (e.g. Goodman, 1971) proposed adding a small constant 1/2 to each cell.

This is similar to Yates correction.  Agresti (1990), argues that apart from the saturated

model, this correction smooths too much the data and makes the test too conservative.  In the

present study, this correction has been used, keeping in mind that the true G2 is somewhere

between the two estimations.

The Log-linear analysis provides also a way to deal with structural zeros.  Structural

zeros are zeros that reflect a non-existence (e.g. a pregnant male).  This possibility will be

useful for analyzing incomplete designs.
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For repeated measures, Rasch model could be used.  A supplementary variable is added.

This categorical variable is obtained by assigning to each pattern of response a category.  For

example, if three questions are asked to each subject, and if people responses fall into three

categories: a, b, c, there will be 33 = 27 categories of count patterns.  More details on that

procedure can be found in Conaway (1989), Lindsay, Clogg & Grego (1989).  According to

Lindsey (personal communication), it is neither reasonable nor necessary when there are only

two repetitions per individual to apply this technique.  It would give the same results.  The

Rasch model could not be applied for between-within design.  Statisticians have not yet

studied the application of log-linear analysis on this type of design (Lindsey, personal

communication).

B . 2 Reaction times

Reaction times have been analyzed by the well-known ANOVA.  Special emphasis has been

put on remedies to the violation of assumptions.

In the analysis of variance it is assumed that the dependent variable is normally distributed

within groups in the population.  The Fisher-Snedecor F statistic is quite robust to deviation

from normality.  Moreover, the normality assumption is about the population and not

samples.  In the present study we will not worry too much about departure from normality.

One major assumption is the homogeneity of variance.  It is assumed that variances in

different groups are approximately equal.  When violated, this assumption is quite serious.

The first remedy when variances have been found to be unequal was to try to transform the

data in a natural way.  For reaction time in ms, one can use 1/x transformation and deal with

speed instead of time.  When this transformation did not make variances homogeneous,

different remedies were applied depending on the design.

For one-way ANOVA, one can think of non-parametric alternatives.  However, there are

parametric techniques that provide correction for the violation of homogeneity assumption.

The first is the Box procedure (see Box 1954a), the second is the Welch procedure (see

Welch, 1951).  According to Kohr & Games (1974), the Welch procedure seems to be better

than Box one, specially when the number of data points is unequal across groups.  We chose

the Welch procedure for one-way ANOVA.  Description of the Welch procedure can be

found in Howell (1987).

For multi-way ANOVA, these latter techniques are not appropriate.  Box (1954b)

describes a correction for two-way ANOVA, but this solution is limited to the cases where

variances across one group variable are unequal.  This solution seems also limited to cases

where factors k>2.  Finally, Box (1954b) does not provides a method for testing interaction

effects.  An appropriate technique was provided by Brown & Forsythe (1974).  Throughout
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the chapter it will be referred as the Brown & Forsythe procedure.  This procedure is derived

from the Welch procedure for one way ANOVA.

In more details, and for the interested reader, here follows the Brown & Forsythe

procedure description.  All F are computed as usual but are distributed approximately with

usual DF effect and f DF for their denominator where f is defined as:

f =
1

cij
2

n − 1j
∑

i
∑

(B.1)

where

cij =
sij

2

sij
2

j
∑

i
∑

(B.2)

and
sij

2 =
xij − xij( )2

∑
nij −1 (B.3)

In repeated-measures designs where factors have more than 2 levels, there are two

additional assumptions: compound symmetry and sphericity.  Compound symmetry requires

equality of variances and covariances of the different repeated measures.  This is a sufficient

condition for the F to be valid.  The sphericity assumption requires that the different levels in

the repeated measure factor are not correlated across subjects.  This suggests that a particular

participant modify her response as successive trials are performed.  This is a necessary and

sufficient condition for the F to be valid.  Sphericity is tested by the Mauchly’s Test.  If the

test is significant, the assumption is violated.  When this assumption is violated, a correction

can be performed: the Box adjustment to degrees of freedom.  Details of this correction can

be found in various textbooks (e.g. Howell, 1987; Hays, 1994 ).  Suffice to say that a

correction ̂ε  is computed.  The numerator degrees of freedom is calculated by multiplying ε̂

with original numerator degrees of freedom. The denominator degrees of freedom is

calculated by multiplying ̂ε  with original denominator degrees of freedom.
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C. INFERNET code and simulator

The code was written in common lisp, (MCL 4.2).  It is available at the following address:

http://www.fapse.ulg.ac.be/Lab/cogsci/jsougne/INFERNET.lisp.zip

A standalone application is also available for Macintosh computers at this address:

http://www.fapse.ulg.ac.be/Lab/cogsci/jsougne/INFERNET.sea





Glossary of symbols

t The time in consideration

i post-synaptic node

j presynaptic node

k node that modify a synapse

t j
( f )

Firing time of node j

ti
( f )

Firing time of node i

tk
( f )

 Firing time of node k

Fj Set of firing time of node j

Fi Set of firing time of node i

Fk Set of firing times of node k

Vi (t)  potential of a node i at time t

Γ i Set of presynaptic j node to node i

Κ ij Set of presynaptic nodes to ij  synapse
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ε( ) Post-Synaptic Potential fonction

η ( ) Refractory period function

wij Connection strength from  pre-synaptic node j to post-synaptic node i

ŵij Noisy connection strength

ŵk → ij  Noisy the connections strength that modify ij  connection

d Delay of a connection

d̂ Noisy delay on connection

x difference between the time in consideration, the time of the presynaptic node

firing and the noisy delay on the connection: x = t − t j
( f ) − d̂

  H () A stepwise function

Θ Firing threshold

t̂i
( f ) Time of the last spike of the node i

u The difference between between the time in consideration and the time of the

last spike of the node:  u = t − t̂i
( f ) )

∆wij
+ The increase of connection strength between node i and node j

c Learning constant

∆wij
− The decrease of connection strength between node i and node j

e Forgetting constant
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∆tγ Delay defined by the gamma wave frequency.  If the oscillation has a

frequency of 40Hz, ∆tγ  = 25

  
F i

θ The set of firing times of node i in a theta cycle

  
F j

θ The set of firing times of node j in a theta cycle

  

r
Fiγ The firing vector of node i for a particular gamma cycle

  

r
Xi Sum of 

  

r
Fiγ  over gamma and theta cycles 

  
=

r
Fiγ

q=1

nγ

∑
p=1

nθ

∑  for node i

r correlation

S The set of binding pairs that are required to consider that a response belongs

to a category.

ρS The normalized signed square correlation (or signed coefficient of

determination) between a set of paired cell assemblies S

yt∑
zt∑

The ratio of the two sets of nodes spike density.

nA The number of node in A cell assembly

nB The number of node in B cell assembly

∆tθ The delay in ms defined by a theta wave

nθ  The number of theta cycles

nγ  The number of gamma cycles

⊃ Material implication

≡ Material equivalence
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& Conjunction

V Disjunction

~ Negation

ε̂ Box correction on the number of degrees of freedom for violation of the

sphericity assumption.  Corrected DF are obtained by multiplicating original

DF with ε̂  for both numerator and denominator DF.

f Brown & Forsythe correction for violation of homogeneity of variances.  f  is

the denominator DF
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