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Abstract

Moddeling human conditional reasoning of the type “if p
then q” containing negations poses a challenge for
connectionism.  A network of spiking neurons
(INFERNET) was used to model this type of conditional
reasoning.  This model also provides insights on certain
human limitations.  The model is compared to empirical
data, and classical explanations.  Statistical analysis
shows that the model’s performance not only surpasses
classical explanations but also provides a very good
overall fit to empirical data.  INFERNET simulator results
are also compared to human performance. The simulations
compare well with both human performance and
limitations.

Introduction
INFERNET (Sougné, 1996, 1998a, 1998b, Sougné &
French, 1997) achieves variable binding through temporal
synchrony of node firing. In short, when one node fires in
synchrony with another, they are temporarily bound
together. It has a limited Working Memory (WM) span and
the content of WM is maintained by oscillations. Once a
node is activated, it tends to fire rhythmically at a particular
frequency.  This technique is used to represent n-ary
predicates (Sougné, 1996), relational reasoning with
multiple instantiation (Sougné, 1998a; Sougné, 1998b),
working memory (Sougné & French, 1997) and conditional
reasoning (Sougné, 1996). This paper shows how the model
handles negated conditionals.
Many psychological studies in the area of deductive

reasoning have focused on conditional reasoning of the type
“if p then q.”  Of course, some logicians would deny that
material implication is really what humans mean by
“if…then”.  Nonetheless, here are transcribed rules related to
material implication: modus ponens (MP) If p then q; p;
infer q and modus tollens (MT) If p then q; ~q; infer ~p (~
stands for not).  While most humans follow modus ponens,
it is different for modus tollens.  People also use two
inappropriate rules related to material equivalence: Denial of
the antecedent (DA) If p then q; ~p; infer ~q, and
Affirmation of the consequent (AC) If p then q; q; infer p.
Throughout this paper the “if p then q” form will be called
the “major premise”, p the antecedent, q the consequent.  
What happens when negations are introduced into the

major premise?  Negation can affect the antecedent or the
consequent.  It produces four forms of major premises.

Table 1 shows these four forms and the inferences resulting
from the application of the four rules (MT, DA, AC, MT).

Table 1: Combination between form of major premises and
the result of applying the four inference rules

MP DA AC MT
given infer given infer given infer given infer

If p then q p q not p not q q p not q not p
If p then not q p not q not p q not q p q not p
If not p then q not p q p not q q not p not q p
If not p then not q not p not q p q not q not p q p

Empirical studies reveal that negations do modify the
frequencies of rule application (Evans, 1977, Wildman &
Fletcher, 1977, Pollard & Evans, 1980).  Pollard & Evans
(1980) explain these data with what they call “negative
conclusion bias” which is a tendency to prefer accepting a
conclusion in the negative form.  This is effectively the case
for DA and MT. This is not the case for MP, but one could
invoke a ceiling effect.  Finally the effect is not clear for
AC.  As stated by Evans, Newstead & Byrne (1993), this
bias could be explained by people’s caution.  Concluding
that “the letter is not an X” would have a higher probability
(25/26) than concluding that “the letter is an X” (1/26).
Oaksford & Chater (1994) provide a similar explanation.
There is also an interpretation of negation effect in terms of
a “Matching bias”: a tendency to verify cases that are stated
in the major premise.  However, this bias concerns only
certain procedures like the “Wason Selection Task”, the
“Truth Table Task” or the “Evans construction task” in
which participants have to test or verify a major premise
instead of applying it.  Moreover, matching bias is closely
related to implicit negation (Evans, 1998).  The present
study focuses on explicit negation.  While negation in
conditionals is known to create difficulties (Oaksford &
Stenning, 1992), little is said about double negation (for an
exception, see Sperber Cara, & Girotto, 1995 or Evans,
Clibbens & Rood, 1995).
In this paper, the INFERNET simulator’s performance

will be compared with human data.  INFERNET suggests
hypothesis related to the difficulty of removing double
negations.  An experiment was also done in order to collect
reaction time data in a production task which were not
available in previous studies.

INFERNET
INFERNET is a network of spiking neurons (Maass &
Bishop, 1999).  In INFERNET, nodes can be in two
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different states: they can fire (be on), or they can be at rest
(be off).  A node fires at a precise moment and transmits
activation to other connected nodes with some time course.
When a node activation or potential Vi

t( )  reaches a threshold,
it emits a spike.  After firing, the potential is reset to some
resting value Vr.  Inputs increase the node potential, but
some part of the node potential is lost at each time step.
Spiking neuron models use a post synaptic potential
function.  Integration of input in INFERNET is a variation
of standard input integration.  In INFERNET there are two
main types of connections: either they act on nodes
(synaptic link) or on synapses (presynaptic link).  Unlike
most links, these latter links act on connections rather than
nodes (French, 1995).  Moreover each of these connections
can be excitatory or inhibitory.  There are six types of
connections: synaptic excitation, synaptic inhibition,
presynaptic amplification of an excitation, presynaptic
inhibition of an excitation, presynaptic inhibition of an
inhibition and presynaptic amplification of an inhibition
(figure 1).  In addition to the weight of a connection, there
is a delay parameter associated with each connection.  A
delay of 10 means that the effect of the presynaptic node
firing on the postsynaptic node will take 10 units of time.
A unit of time has been taken to simulate 1 ms.  In
addition, connection weights are modified by a random
factor that injects white noise into the signal propagation.

j

k

i

Figure 1: Example of synaptic and presynaptic connection
in INFERNET.  The node k inhibits the exitatory

connection from j to i
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The potential of node i: Vi
t( )
 is affected by connection

weights coming from presynaptic node j: ŵij  but also by
the connection weights that modify this connection ŵk→ij .
The set of presynaptic to node i is Γi j j is presynaptic to i= { } .  Fj
is the set of all firing times of presynaptic nodes j: t j

f( ) .  The
set of presynaptic to synapse ij is Κ ij k k is presynaptic to ij synapse= { } .
Fk is the set of all firing times of k nodes: tk

f( ) .  These are
the nodes from which start a connection acting on the
connection ij.  The connection weight linking node k to
synapse ij is designed by wk ij→ .  The equations ε ij x( )  and
εk ij x→ ( ) express the postsynaptic potential function.  A value
ηi u( ) associated with the refractory state of nodes is
substracted.  When Vi

t( )  reaches  the threshold Θ, node i fires
and Vi is reset to a resting value Vr,

Representation in INFERNET
How does the brain represent the world?  Two contrasting
hypotheses are often presented in neuroscience: the code
used by neurons is either a rate code or a pulse code.
INFERNET relies on a pulse code, specifically, phase and

synchrony.  In INFERNET, a symbol is represented by a
cluster of nodes and is activated if its nodes fire in
synchrony (the firing distribution is tightly concentrated
around the mean: figure 2).  Different symbols share nodes,
so representations are distributed (see Sougné, 1998b), or
more accurately, semi-distributed.
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Figure 2: Symbols are represented as a set of nodes firing in
synchrony.

There is considerable neurobiological evidence for
considering synchrony as a possible binding mechanism in
the brain (Roelfsema, Engel, König & Singer, 1996,
Singer, 1993, Singer & Gray, 1995).  In INFERNET,
attributes are bound to an object and objects are bound to
their roles by synchronous firing.  For example, to represent
“the red rose on the green lawn”, the attribute “red” must
fire in synchrony with the object “rose” and they must fire
synchronously with nodes belonging to the role “supported
object” (Figure 3).
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Figure 3: The “red rose on the green lawn” requires binding
of symbols  with their roles.

Discrimination is achieved by successive synchronies, for
example, to discriminate a red rose on a green lawn.  The
nodes belonging to “red”, “rose” and “supported object”
must fire in synchrony and those corresponding to “green”,
“lawn” and “supporting object” must also fire in synchrony.
Further, these two sets of nodes must fire asynchronously in
different phases for “the red rose on the green lawn” to be
perceived.  Engel, Kreiter, König, & Singer (1991) provide
evidence to show that if several objects are present in a
scene, several groups of cells are clustered in distinct
windows of synchrony.
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A number of neurobiological parameters are involved in
representations that rely on clusters of nodes firing
simultaneously.  The first is the frequency of oscillation.
Certain specific oscillatory activities seem to facilitate
synchronization (Roelfsema et al., 1996, Singer, 1993).  In
INFERNET once a node is activated, it tends to begin
oscillating at a γ frequency range, whose lower limit is
30Hz and upper limit varies, according to various authors,
from 70Hz (Abeles, Prut, Bergman, Vaadia & Aertsen,
1993), 80 Hz (MacKay, 1997) to 100 Hz (Wilson &
Shepherd, 1995). The temporal gap between 2 spikes of a
node is therefore from 10 to 33 ms.  These γ waves have
been observed to be associated with attention (Wang &
Rinzel, 1995) and with associative memory (Wilson &
Shepherd, 1995) and therefore seem to be a primary
candidate for enabling synchronization and binding (Singer,
1993).  The second key parameter is the precision of the
synchrony at this frequency range.  According to Singer and
Gray (1995) this precision is between 4 to 6 ms., while for
Abeles and al. (1993), it is about 5 ms, sometimes less, and
depends on the oscillation frequency.  This allows us to
approximate the number of windows of synchrony that can
be differentiated, i.e., approximately 25/5 = 5, based on a
typical frequency of 40Hz.  If we assume that a window of
synchrony corresponds to an item, a word, an idea, an
object in a scene, or a chunk in working memory (WM),
this puts WM span at approximately 5, with a small
amount of variance since precision is proportional to
oscillation frequency.  This corresponds to current estimates
of human WM span (see Cowan, 1998).  The more the
system needs to discriminate objects in WM, the more
precise the synchrony should be.  Since this parameter is
bounded, it can lead to WM overload where windows of
synchrony can no longer be distinguished.  Therefore, the
number of distinct items and the number of predicate
arguments (Sougné, 1996) in WM is limited.  Finally,
following Lisman and Idiart (1995), the representation is
maintained in WM by bursts of γ waves.  Similar
explanations for the brain’s ability to store short-term
memory items can be found in the literature (Hummel &
Holyoak, 1997; Jensen & Lisman, 1998; Lisman and Idiart
1995; Shastri & Ajjanagadde, 1993).

Inference in INFERNET
INFERNET implements logical gates sensitive to input
timing.  AND-gates require all inputs to reach the target at
the same time.  This is achieved by a set of excitatory and
inhibitory links combined with presynaptic inhibition and
facilitation (see Hawkins, Kandel, and Siegelbaum, 1993,
for neurobiological evidence of this mechanism).  Similarly,
XOR-gates are only on when one of the inputs is active.
These gates are related to the phenomenon of coincidence
detection  (Konnerth, Tsien, Mikoshiba, & Altman, 1996,
Singer, Engel, Kreiter, Munk, Neuenschwander, &
Roelfsema, 1997).
INFERNET has a Long Term Knowledge Base that is

used for encoding premises and answering queries.  Figure 4
shows the knowledge necessary to make conditional
inferences with negations.  Arrows represent connections;
they are tagged with numbers that indicate the time required

to propagate activation.  Specifically, in this example, a
delay of 30ms corresponds to the lag between two spikes of
a node oscillating at 33Hz.  This delay ensures that these
symbol-node spikes will synchronize after 30ms.  The
knowledge encoded, as shown in Figure 4, can correctly
answer queries related to material implication.
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Figure 4: The encoded knowledge necessary to deal with
negated conditionals

The first capacity that INFERNET must have is the
ability to distinguish negations in the major premise.
AND-gate 2 detects when the antecedent is negated in the
major premise and AND-gate 3 detects a negated
consequent.  During the premise-encoding phase, if an
antecedent is negated, for example: If ~p then q, the
connection between the AND-gate 2 and p will be
strengthened as well as connections between p and
Antecedent.  After this phase, the firing of p nodes will be
sufficient to induce the synchronous firing of nodes of
AND-gate 2.  The second ability of INFERNET is to detect
whether in the question (minor premise) the antecedent or
the consequent (as it occured in the major premise) is
negated and that is done by AND-gate 1 and AND-gate 4.
By following the diagram carefully, one can see that AND-
gate 1 detects the denial of the antecedent, and AND-gate 4
detects the denial of the consequent.  If the antecedent or the
consequent has a negative form in the major premise (e.g. If
~p then ~q), and if the minor premise is in the affirmative
form (e.g. p), AND-gate 1 will be activated by AND-gate 2
by the means of an XOR-gate.  The same principle activates
AND-gate 4.  The role of AND-gate 5 is to detect double
negations.  This gate will be active whenever AND-gate 1
and 2 or AND-gate 3 and 4 are active.  This gate prevents
nodes representing negation from firing.  In order to do
correct inferences, Antecedent and Consequent must be
linked.  The detection of the antecedent in the question
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must enable firing of consequent nodes, unless AND-gate 1
is active (thereby avoiding Denying the Antecedent).  The
detection of the consequent in the question must enable
firing of antecedent nodes if AND-gate 4 is not active (it
avoids Affirming the Consequent).  Finally, if AND-gate 1
is active, AND-gate 4 will be activated, and vice-versa.

Hypotheses
Classical explanations of negation effects in conditional
reasoning rely on the notion of “negative conclusion bias”: a
tendency to prefer inferences in the negative form with the
exception of MP (Pollard & Evans, 1980).  
The first hypothesis that follows from INFERNET is that

it should be easier to apply Modus Ponens than any other
rule.  This effect is attributed to the stronger links from
antecedent nodes to consequent nodes.  The second
hypothesis states that whenever AND-gate 5 (see figure 4) is
needed, a decrease in performance should occur.  This effect
is due to an increase of the number of steps required to
propagate the activation and to this gate’s role of blocking
the oscillation of negation nodes.  AND-gate 5 is required
to treat double negations.  Therefore this hypothesis predicts
a decrease in DA errors for major premises If p then ~q and
If ~p then ~q and a poorer MT performance for major
premises If ~p then q and If ~p then ~q.
In order to contrast classical and INFERNET hypotheses

frequencies of inference and reaction times will be used.

INFERNET Simulation Results
Normalized correlation between obtained data and different
possible answers was computed for the 40 trials.  This is a
correlation between data observed and data for perfect
answers.  The proportion of correct responses was obtained
by combining the correlations obtained on different trials,
taking care to ensure that correlations are not additive (see
Sougné, 1999 for computation details). INFERNET
simulator results are reported in figure 5.
As expected, MP is more often applied than any other

rule.  There is also an effect of double negation which is
responsible for the low frequencies of DA when the
consequent is negated and of MT when the antecedent is
negated.
Response times for the simulator are measured by

monitoring the encoding phase.  After each γ wave burst,
the questions are presented and responses are collected.
Since the INFERNET simulator has a resolution of 1ms,
the response time is determined by the time (in ms) for the
normalized correlation to reach a threshold.  INFERNET
simulator mean reaction times are reported in figure 6.  The
reaction times show that MP responses are faster than others
and that a double negation results in slower reaction times.
An experiment was conducted to provide data that could

be compared with INFERNET.  Normally, data about
negation effects on conditional reasoning do not provide
reaction times and are collected with forced choice
responses.  The comparison between machine and human
data will allow us to test INFERNET.

Experiment and comparison with INFERNET
simulator

Participants and Design
The experiment has a within-subjects design. Forty
participants received four major premises in a random order
and had to answer four questions for each major premise in
a random order.  The 40 participants were undergraduate
psychology majors, 31 females 9 males, mean age was 21.3
and SD was 2.1.  

Material
Four major premises were constructed, alternating positive
and negative antecedents and consequents. Positive
antecedent, positive consequent: If the number is 3 then the
letter is X, Positive antecedent, negative consequent: If the
number is 3 then the letter is ~X, Negative antecedent,
positive consequent: If the number is ~3 then the letter is X,
and Negative antecedent, negative consequent: If the number
is ~3 then the letter is ~X.  Each major premise presentation
was followed by four questions: The number is 3, what do
you conclude?, The number is ~3, what do you conclude?,
The letter is X, what do you conclude?, The letter is ~X,
what do you conclude?”.

Procedure
Each participant was seated approximately 50 cm in front of
the monitor.  One of the randomly chosen major premises
appeared on the screen.  Participants were asked to read it
and to indicate when they understood it.  The major premise
stayed on the screen when the subsequent questions were
displayed.  Questions then appeared on the screen, one at
the time and in random order. Participants had to answer
each question.  The computer recorded the time required to
respond.  The experimenter recorded the response.  When
the participant answered the four questions, the next major
premise appeared on the screen with the same procedure
until the four major premises had been presented.  Before
presenting the experimental material, participants received
training exercises with the same procedure, but with an
arithmetic content.

Results
Frequencies of stating each inference are shown on figure 5.
According to the “Negative Conclusion Bias“ hypothesis,
there should be more DA type inferences for major premises
If 3 then X and If ~3 then X, more AC type inferences for
major premises If ~3 then X and If ~3 then ~X, more MT
type inference for major premises If 3 then X and If 3 then
~X, and finally more MP. According to the INFERNET
prediction, there should be more MP type inferences than
any other, fewer DA type inferences for major premises If 3
then ~X and If ~3 then ~X, and fewer MT type inferences for
major premises If ~3 then X  and If ~3 then ~X.
Data were analyzed by a Loglinear analysis which

provides a means to analyze multi-way frequency table.
Loglinear analysis evaluates the effect of each variable and
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of their interaction1.  Moreover, loglinear analysis evaluates
each model that could explain the data, this gives us a way
to compare INFERNET and the classical “Negative
Conclusion Bias” model.
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Figure 5: Graph of comparison between human and
INFERNET simulator frequencies of inference.

In addition to the effect of the conclusion sign (i.e. with
or without “not” in the conclusion) being significant (194
positive and 265 negative conclusions, G2

(1)=44.135,
p<.0001, other effects are also.  The effect of expected sign
is significant, which means that DA + MT (188 inferences)
are less often applied than MP + AC (271 inferences),
G2

(1)=59.358, p<.0001.  Forward inferences (MP+DA) are
more often done (247 inferences) than backward inferences
(AC+MT) (212 inferences), G2

(1)=11.092, p<.001.  The
interaction between the expected sign and the conclusion
sign is also significant: among the positive conclusions
those which involve a double negation are less often inferred
(65 inferences) than others (129 inferences) while for
negative conclusions cases, expected positive cases (142
inferences) are more comparable with expected negative
cases (123 inferences), G2

(1)=4.893, p<.03.  There is also an
interaction between the expected sign and Forward and
backward inferences.  MP are more often applied (155
inferences) than AC (116 inferences) while DA (92
inferences) and MT (96 inferences) are sensibly equal,
G2

(1)=30.226, p<.0001.  The INFERNET model is the best
fitting model G2

(20)=12.88, p=.88, while Negative
Conclusion bias with the exception of MP cases provides a
poor fit: G2

(22)=21.92, p=.46.  The difference between these
two models is significant: G2

(2)=9.04, p<.01.
The INFERNET data are not significantly different from

these results.  The comparison with human data can be done
by adding one group factor to the analysis (Human vs
INFERNET simulator).  The effect of group is not
significant, none of the interactions are significant.
Figure 6 shows mean reaction times for the 4 major

premises and the four questions.  The two hypotheses to
compare are the same as above.  The use of ANOVA2 with
_____________________________

1 All the following G
2

 are underestimated because data were
analysed with a between subjects design.  A method for
analysing within designs exists but in this case, it would
require a 216 table to analyse.  However, this would not be
feasible.  Note, however, that a within-subjects ANOVA
gave the same results.

2 In this analysis, degrees of freedoms have been corrected
because of violation of the sphericity assumption: Box
correction ε̂  = .23

4 within-subject factors reveals a significant effect of the
variables “Positive or Negative Conclusion”: F(1,9)=11.02
p<.01 (negative conclusion bias).  However, a Post Hoc
Tukey test reveals that cases in which the conclusion is
negative are only faster than those involving double
negation.  The double negation effect is significant:
F(1,9)=12.79 p<.01.  A post hoc Tukey reveals that
reaction times for cases of “Double Negation” are
significantly longer than others.  INFERNET reaction times
are faster than those of humans, but INFERNET does not
account for the time of reading the question and producing
an utterance.  
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Figure 6: Graph of comparisons between human and
INFERNET simulator mean reaction times.

Conclusions
Connectionist moddeling of human reasoning is a difficult
challenge.  Even though Holyoak & Spellman (1993) have
described human reasoning in terms of constraint
satisfaction, few connectionist systems has been designed
for moddeling reasoning.  INFERNET shows how
reasoning might be possible based on certain low-level
neurobiological mechanisms.  These properties constrain the
reasoning process and explain human limitations.  People
are sensitive to negated conditionals.  INFERNET’s account
of the phenomenon involves the type of inference and
double negation effects and challenges classical explanations
that rely on the notion of “Negative Conclusion Bias”.  It
was predicted that the number of steps required to perform
an inference constrained the reasoning process.  Removing
double negations requires a long chain of gates opening.
The longer the chain of successive gates, the higher the
number of errors, and the less opportunity for binding
fixation.  This paper presented INFERNET’s predictions
and results.  These results confirmed that INFERNET is
sensitive to double negations.  A similar experiment has
been conducted on human participants.  Results confirmed
INFERNET’s prediction and showed that the INFERNET
explanation is better than classical explanation in terms of
“negative conclusion bias”.  Finally, INFERNET and
humans data were compared and there is a high degree of
qualitative similarity between the two.
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